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ABSTRACT
Fermenting glucose in the presence of enough oxygen to support respiration, known as aerobic glycolysis, is be-
lieved to maximize growth rate. We observed increasing aerobic glycolysis during exponential growth, suggesting
additional physiological roles for aerobic glycolysis. We investigated such roles in yeast batch cultures by quan-
tifying O2 consumption, CO2 production, amino acids, mRNAs, proteins, posttranslational modifications, and
stress sensitivity in the course of nine doublings at constant rate. During this course, the cells support a constant
biomass-production rate with decreasing rates of respiration and ATP production but also decrease their stress
resistance. As the respiration rate decreases, so do the levels of enzymes catalyzing rate-determining reactions
of the tricarboxylic-acid cycle (providing NADH for respiration) and of mitochondrial folate-mediated NADPH
production (required for oxidative defense). The findings demonstrate that exponential growth can represent not a
single metabolic/physiological state but a continuum of changing states and that aerobic glycolysis can reduce the
energy demands associated with respiratory metabolism and stress survival.

METABOLIC AND PHYSIOLOGICAL DYNAMICS
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GLOBAL GENE EXPRESSION DYNAMICS
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The levels of enzymes (and their corresponding mRNAs) catalyzing the tetrahydrofolate (THF)-mediated mitochondrial
NADPH biogenesis decline, parallel to the decreased oxygen consumption (Figure 2F), during the first exponential growth
phase. These include all enzymes (Ser3p, Ser33p, Ser1p, Ser2p) catalyzing the serine biosynthesis from 3-phosphoglycerate, the
hydroxymethyltransferases (Shm1p, Shm2p) and the mitochondrial NADPH synthetases: the dihydrofolate reductase (Dfr1p)
and the mitochondrial C1–tetrahydrofolate synthase (Mis1p).
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