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Abstract 

Over the last decade, proteomic analysis of single cells by mass spectrometry 
transitioned from an uncertain possibility to a set of robust and rapidly advancing 
technologies supporting the accurate quantification of thousands of proteins. We 
review the major drivers of this progress, from establishing feasibility to powerful 
and increasingly scalable methods. We focus on the trade-offs and synergies of 
different technological solutions within a coherent conceptual framework, which 
projects considerable room both for throughput scaling and for extending the 
analysis scope to functional protein measurements. We highlight the potential of 
these technologies to support the development of mechanistic biophysical 
models and help uncover new principles.     
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Introduction   
In the past decade, single-cell analysis has been dominated by nucleic acid-based profiling – 
especially single-cell transcriptomics (scRNA-seq) and genomics – which has supported 
characterization of cellular heterogeneity and the discovery of novel cell states(1, 2). However, 
these nucleic-acid-focused approaches provide an incomplete picture of cell biology, as RNA 
levels are indirect proxies for protein activity or phenotype(3–6). In fact, protein degradation is 
the dominant factor setting the abundance of many proteins(7, 8). Furthermore, cellular 
behavior depends on post-translational modifications (such as regulatory proteolysis, binding 
interactions, subcellular localization) that can be determined only by direct protein 
measurements. Consequently, there is a growing recognition that single-cell analyses must 
expand beyond genomes and transcriptomes to include direct measurements of other 
biomolecules, including proteins(9). 

Indeed, direct protein analysis at the single-cell level is essential for understanding molecular 
mechanisms and cellular phenotypes since they depend on protein abundance, enzymatic 
activity, subcellular localization, and conformational dynamics. Yet achieving comprehensive 
single-cell proteome measurements remains technically challenging. Traditional single-cell 
protein assays (e.g. flow/mass cytometry or DNA-barcoded antibody panels) usually detect a 
few dozen proteins per cell and often suffer from limited antibody specificity(10, 11). Moreover, 
protein concentrations span a vast dynamic range (from ~1 to 107 copies per cell); it poses 
changes for all methods, especially for single-molecule proteomics(12) and limits the detection 
of many low-abundance proteins. These limitations underscore the critical need for continued 
methodological developments towards overcoming the formidable challenges of accurate, 
comprehensive, and scalable quantification of single-cell proteomes. Many types of approaches 
may contribute solutions towards this goal(13), and here we focus on mass spectrometry (MS) 
proteomic approaches that have already demonstrated strong performance(14, 15) and hold 
much promise for further advancements(16). Accordingly, this review will focus on the advances 
in MS proteomics that recently have made remarkable gains. We will also project avenues that 
offer the potential for substantial technological and methodological gains in the coming years.  

The direct quantification of proteins at sufficient accuracy and throughput may enable inference 
of direct molecular mechanisms, and potentially new new principles. This appealing possibility is 
the focus of the last section that contrasts formal statistical inference based on associations with 
mechanistic models grounded in biophysical principles and direct molecular interactions. We 
emphasize why measuring proteins (rather than only transcripts) is crucial for causal and 
mechanistic understanding of biological systems. We consider current limitations and outline 
future directions for the field, including promising approaches to harness single-cell protein data 
for causal discovery. 
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The arc of technology development  
MS has been used to detect a few abundant proteins and peptides in individual cells for 
decades (reviewed in refs.(17, 18)), but until recently the sensitivity of MS was considered 
insufficient for the quantification of many proteins in single cells from complex tissues(19). Yet, 
sensitive sample preparation methods(20–22) and new experimental designs for multiplexed 
data acquisition(23, 24) started changing these perceptions. In the early stages, the use of 
isobaric mass tags together with carrier samples, introduced by the SCoPE-MS method (23), 
was very helpful to increase the copy number of fragmented peptides and thus support 
sequence identification given the more limited sensitivity of older instruments, such as 
Q-Exactive orbitraps. Isobaric tagging allows peptides from multiple cells to be measured in one 
MS run, while the pooling of peptide fragment ions across many isobarically labeled single cells 
and a “carrier” (a larger sample) increases the ions supporting sequence identification(25–28). 
The convincing demonstrations of the feasibility of single-cell proteomics analysis by MS 
(reviewed in ref.(10, 29–31)) accelerated the development of both MS instrumentation and 
methods that are reviewed in the sections below.     

The development of these technologies was fueled by considerable technological and 
conceptual opportunities(32). A notable advantage of proteins is that they have about 
10,000-fold higher copy numbers per cell than transcripts, which allowed even early generation 
methods to quantify proteins based on better counting statistics than parallel transcriptomic 
analysis(26). These technical advantages and the biological imperatives for direct quantification 
of proteins supported the development of single-cell proteomics. New MS instruments(33, 34) 
enabled deeper proteome coverage(15, 35), though older instruments continue to support 
biological investigations, often aided by isobaric carriers(27, 36–39) and intelligent data 
acquisition(40, 41). This progress happened in the context of the larger and more mature 
single-cell transcriptomic field, which provided both directions by analogy and high bars to meet 
and exceed for a nascent field with limited funding support. The parallel developments of other 
single-cell omics and spatial methods (whose spatial resolution relies on the sensitivity 
improvements of MS) has provided opportunities for cross pollination(42, 43).  

 

 

Sample preparation and peptide separation 
One of the main challenges in the field has been to develop methods for sample preparation 
that simultaneously minimize protein losses and contaminants while preparing many cells in 
parallel. A variety of sample preparation methods have been developed, which can be grouped 
by the physical platform used, Figure 1. Here, we categorize these methods into four platforms 
– multiwell plates, microchips, glass slides, and microfluidic systems – and describe 
representative techniques, core features, and advantages of each. We specifically highlight how 
each platform addresses key challenges: minimizing protein loss, reducing contamination, and 
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enabling parallel processing, in both label-free and multiplexed MS contexts. A few methods, 
such as cell lysis by sonication(28), acoustic levitation(44), sampling by patch-clamp(45) and 
microsampling(46), fall outside of these major categories and will not be discussed here.  

 

 

Figure 1. Sample preparation methods for single-cell proteomics categorized by the physical 
platforms used. The number of single cells that can be prepared in parallel as part of a single 
batch is listed at the bottom.    

 

Multiwell Plate-Based Methods 

Multiwell plates (e.g. 96- or 384-well plates) provide an accessible platform for single-cell 
proteomics sample preparation. Typically, single cells are isolated (via FACS, CellenONE or 
micromanipulation) into individual wells, and all proteomic processing – cell lysis, protein 
digestion, and optionally isobaric labeling – is carried out in the same well. Volumes are kept low 
(on the order of 1–10 µL) to reduce surfaces and dilutions that could cause protein losses. The 
first such example is the Minimal ProteOmic sample Preparation (mPOP) protocol(22, 47), 
which employs a freeze–heat lysis in pure water within 384-well plates. This gentle one-pot lysis 
avoids detergents or chaotropes, thereby eliminating the need for cleanup and minimizing 
surfaces that peptides contact, which in turn reduces adsorptive loss and risk of contamination. 
After lysis and tryptic digestion, peptides from single cells can be chemically labeled with mass 
tags (e.g., TMTpro, mTRAQ, dimethyl, PSMtags) directly in the wells. Numerous other methods 
have built upon mPOP and use multiwell preparation methods(34, 48–50). These methods are 
commonly used for label-free single-cell proteomics though some can support labeling.  
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Core features and advantages: Multiwell plate methods leverage standard labware and liquid 
handling, making them relatively easy to implement. They are compatible with existing 
automation (e.g. robotic pipettors or acoustic dispensing) to handle small volumes and reduce 
human contact contamination. When optimized, all steps occur in a single well, which minimizes 
transfers between vessels that would otherwise cause protein loss. Multiwell formats inherently 
support parallel processing of a few hundred single cells. In summary, plate-based methods 
provide an accessible entry to single-cell proteomics with simple one-pot protocols that use 
μL-scale volumes, larger than other methods. Pooling of labeled cells generally remains a 
manual step (for multiplexing). 

 

Microchip-Based Methods 

Microfabricated chip platforms improve on conventional plates by allowing to reduce the surface 
areas and volumes. These platforms typically consist of an array of small wells or chambers on 
materials like silicon or polymer, often with specialized coatings. Each well functions as a small 
reactor for a single cell’s proteome, enabling one-pot processing. A landmark in this category is 
the Nanodroplet Processing in One Pot for Trace Samples (nanoPOTS) (51). NanoPOTS uses 
photolithographically patterned glass chips containing nanowells of ~200 nL or smaller, into 
which single cells are deposited and lysed. By confining the entire sample prep to small 
volumes, nanoPOTS demonstrated improved protein recovery and identification from as few as 
1–100 cells(51). Its more recent iteration, the nested nanoPOTS chip (N2), further shrinks 
reaction volumes to <30 nL per well and packs more nanowells per chip(52). The N2 design 
“nests” multiple tiny wells under a larger droplet: after each single-cell digest is labeled (with 
TMT) in its nanowell, a microliter-scale droplet added on top simultaneously pools all wells in 
that cluster for easy collection. This innovation facilitates the pooling and reduces surface 
contact. Another representative is the proteoCHIP, a commercial micromachined 
polytetrafluoroethylene (PTFE) chip with arrays of conical wells (e.g. 96-well format)(53). The 
proteoCHIP is pre-filled with an inert oil overlay. After digestion (and labeling if multiplexing), the 
entire well content can be transferred for analysis. Both N2 and the proteoCHIP are operated 
with an automated nanoliter dispensing robot (CellenONE).   

Core features and advantages: Microchip-based methods reduce volume compared to 
multiwell plate methods, which can help reduce protein losses and allow for higher 
concentrations that in turn improve reaction efficiency. Both label-free and multiplexed workflows 
are compatible: a proteoCHIP can be used in “LF” mode to prepare ~96 single-cell digests 
separately for individual nanoLC-MS runs, or in multiplexed mode to label and then pool cells 
(e.g. 16 single cells per set) within the chip. Likewise, nanoPOTS chips were first used for 
label-free profiling of small bulk samples composed of 10–100 cells, but later extended to 
TMT-labeling of single cells (N2 chip) supporting the quantification of about 1500 proteins per 
cell. The trade-offs include the need for specialized microfabricated consumables and 
sometimes custom robotic handlers. 
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Glass Slide-Based Droplet Arrays 

Glass slide-based methods increase the throughput and flexibility of sample preparation by 
using open surfaces to arrange nanoliter droplets, rather than fixed wells. In this approach 
(nPOP), microscope slides with special coating are used as a platform on which thousands of 
tiny reaction droplets are dispensed in an array. nPOP has allowed the parallel preparation of 
thousands of single cells by spotting nanoliter droplets on unpatterned slides(15, 54). In nPOP, 
an automated dispenser (CellenONE) deposits single cells in ~10–20 nL DMSO droplets onto 
the slide in prescribed patterns. Unlike microfabricated chips with fixed well locations, this open 
format offers spatial freedom to design droplet arrays of any size or grouping to suit the 
multiplexing scheme. For example, droplets can be arranged in clusters corresponding to an 
isobaric labeling set. Leduc et al. demonstrated a 29-plex design where 29 single-cell droplets 
(each destined for a different TMTpro tag) are placed in proximity as one cluster, enabling 
simultaneous preparation of 3,584 single cells across four slides in one nPOP run. Each 
cell-containing droplet undergoes lysis, proteolysis, and labeling on the slide surface. Because 
the slide is flat and unconfined, reagents can be added by the robot to each droplet in parallel 
(e.g. overlaying lysis buffer, then adding TMT reagents). After labeling, droplets belonging to the 
same multiplexed set are aspirated and combined (via the CellenONE system) for MS analysis, 
or in a label-free scenario, each droplet can be picked up individually for injection. 

Core features and advantages: The glass slide platform offers maximal throughput and 
scalability with minimal reaction volumes. Slides are easy to obtain and prepare (no 
microfabrication needed), and hundreds to thousands of nanodroplet reactors can be arrayed 
on a single slide. The capacity is limited mainly by the dispensing speed and slide area – 
indeed, nPOP’s throughput (over 3,700 single cells per prep) is currently constrained by the 
dispensing speed (~2 hours). This approach achieves the smallest reaction volumes (droplets in 
the tens of nL), which translates to lower surface contact and high protein recovery comparable 
to nanowell chips. An advantage unique to slides is the flexibility to adapt any plex size or 
experimental design without having to redesign a device. Researchers can simply program 
different droplet patterns (e.g. to use a 35-plex TMTpro kit or a 9-plex PSMtag set) on the same 
slide format. As with microchips, all reactions for a given cell occur in one droplet, obviating 
transfers and thereby limiting losses and contamination. The open format, however, requires 
careful environmental control – typically the slide is kept in a humidity-controlled enclosure to 
prevent evaporation and airborne contaminants from entering the tiny droplets. When properly 
controlled, slide-based nPOP has demonstrated competitive depth and quantitative accuracy: 
about 3,000–3,700 proteins quantified per human cell using a plexDIA (multiplexed DIA) 
workflow, with low measurement noise (e.g. blank droplets give very low signal) and high 
quantitative accuracy(15). While nPOP was introduced for multiplexed TMT/plexDIA processing, 
the protocol can be used for label-free preparation as well. In that case, many single cells are 
prepared in parallel. Then, they are individually collected for separate LC-MS runs, though the 
advantages of nPOP are most pronounced for multiplexed workflows. In summary, glass slide 
droplet arrays combine miniaturization with massive parallelisation, making them ideal for 
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suitable multiplexed single-cell proteomics, provided one has access to the requisite dispensing 
and collection instrumentation. 

Microfluidic Integrated Systems 

Microfluidic systems take a different approach by integrating the entire sample prep workflow 
within closed microdevices (Lab-on-Chip devices). These platforms use micro-scale fluid 
channels, chambers, and valves (often in polydimethylsiloxane, PDMS) or electrowetting-based 
digital chips to automate protocols on chip. The goal is to minimize exposure, thus reducing 
contamination, while precisely manipulating microliter or sub-microliter volumes to improve 
recovery. One implementation, SciProChip, uses a two-layer PDMS microfluidic chip, which 
features microvalve-controlled flow channels for cell isolation, lysis, digestion, on-chip 
solid-phase extraction cleanup, and collection – all on one device(55). Single cells are captured 
in dedicated microchambers, imaged/counted in situ, then lysed and digested in hundreds of nL 
reaction vessels; the resulting peptides are passed through an integrated C18 resin 
microcolumn for desalting before elution off-chip to MS. The entire process is coordinated by 
dozens of microvalves that route fluids from inlets to various chambers in a programmable 
sequence. Another approach is digital microfluidics, which uses electrostatic forces to 
manipulate discrete droplets on an array of electrodes(56). In this system, droplets containing 
single cells and reagents are moved, merged, and split on a planar chip under software control. 
All steps – cell lysis, reduction/alkylation, and trypsin digestion – are executed in succession by 
shuttling the droplet to different zones of the chip, with on-chip vision to ensure one cell per 
droplet. Microfluidic chips can also be used to sensitively enrich for post-translational 
modifications, such as phosphorylation(57).  

Core features and advantages: Microfluidic platforms bring the benefit of full automation in a 
closed environment. By integrating all steps on a chip, they reduce the risk of external 
contamination (no open tube transfers or manual pipetting of tiny volumes). They also facilitate 
sample traceability since each cell stays in a known micro-chamber or droplet throughout 
processing. While microfluidic chips allow for processing multiple cells concurrently (SciProChip 
contains 20 independent single-cell processing units on one device), the parallelization 
demonstrated so far is substantially lower than with glass slides. Current demonstrations have 
mostly focused on label-free analysis – each cell’s digest is delivered separately to MS, though 
in principle chip designs may be amenable to multiplexing. A challenge for microfluidics has 
been reagent compatibility since organic solvents for labeling can swell PDMS or interfere with 
droplet actuation. In sum, microfluidic systems offer a highly controlled, automated environment 
for single-cell proteomics though remain limited in accessibility,  

 

Minimizing artifacts  

An important objective for all sample preparation methods is to minimize artifacts during sample 
preparation. These can include stresses that result in physiological changes during cell isolation 
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or storage, cell permeabilization, variations in cell lysis or protein digestion efficiency. Following 
the community guidelines(58) and monitoring for batch effects can mitigate their impact on data 
interpretation. As the field matures, these factors have received more attention(42), with articles 
characterizing the impact of cell storage conditions(59) and suggesting fixation protocols for 
increasing the proteome stability during sample processing(60). A particular concern is the 
possibility of proteins leaking from the cells if cell integrity is lost during cell isolation from 
tissues. Since such protein loss affects some groups of proteins more than others, protein 
leakage systematically affects groups of functionally related proteins and may be mistaken for 
biological signals(61). Such artifacts may be avoided by using cell permeability dyes to isolate 
only intact cells during sample preparation or mitigated by using computational methods to 
remove strongly affected cells post data acquisition(61).   

 

Peptide separation  

Handling the enormous dynamic range of proteomes requires high-performance separation of 
peptides(12). It allows for efficient sampling and quantification of analytes of vastly different 
abundance and achieving deep proteome and sequence coverage in a single experiment. This 
separation can be achieved in liquid phase (using chromatography or capillary electrophoresis) 
or in gas phase (using ion mobility). This section will focus on liquid phase separation (which is 
the most common and powerful form of separation) while gas phase separations will be covered 
in the next section on data accusation. 

The sensitivity of single-cell proteomics can be increased by low-flow peptide separation 
techniques. Reducing flow rates into the low-nanoliter per minute range (via nanoLC or capillary 
electrophoresis separations) improves electrospray ionization efficiency, delivering more peptide 
ions. This is because tiny flow rates produce finer ESI droplets with less ion suppression. For 
example, dropping from 300 nL/min to 20 nL/min can increase signal intensity per molecule by 
roughly 5-10 fold(62). In practice, such ultra-low-flow setups translate to deeper proteome 
coverage from small samples(63) and single cells(64). Capillary electrophoresis (CE)–MS 
approaches, which inherently operate at sub-50 nL/min flows, have likewise shown sensitivity 
gains(65), especially for the nascent analysis of intact proteins(66). Such results demonstrate 
that miniaturized, low-flow separations can substantially improve ion utilization and signal 
intensity, directly translating into deeper single-cell proteome coverage. 

These benefits, however, come with trade-offs in robustness, accessibility, and 
reproducibility(67). Operating narrow-bore LC columns (20–50 μm i.d.) and nanoflow regimes 
are technically challenging and prone to clogging. Gains from using narrower columns can be 
tempered by practical issues like sample loss and long loading times: nanoLC systems often 
require relatively large volumes and extra dead volume flushing, which at ~10–20 nL/min flow 
leads to dilute samples and delays, potentially undermining sensitivity gains. Capillary 
electrophoresis, while very sensitive, has its own reproducibility hurdles: peptides may adsorb to 
the capillary walls and slight drifts in electroosmotic flow or electrospray stability can erode 
run-to-run consistency. Moreover, CE-MS demands handling of picoliter–nanoliter sample 
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volumes, which is non-trivial given that most single-cell sample prep methods output in the 
microliter range – introducing a tiny aliquot into the capillary without loss or contamination is a 
significant challenge. Consequently, both narrow-bore nanoLC and CE-based workflows have 
historically shown reduced robustness and accessibility, often confined to specialized labs with 
expert optimizations(67).  

To integrate the strengths of low-flow methods while mitigating their limitations, ongoing efforts 
are focusing on new technologies and hybrid strategies. Researchers are developing alternative 
column formats – such as monolithic and nano open-tubular columns – that can sustain efficient 
separations at ultralow flows without the clogging and packing difficulties of conventional packed 
beds. Improved CE-MS interfaces are also being explored: for example, chemically coated 
capillaries (e.g. with linear polyacrylamide) to prevent analyte adsorption and stabilize flow, and 
on-line preconcentration techniques like sample stacking or solid-phase microextraction to 
increase injection capacity. In parallel, multiplexed low-flow LC systems are boosting throughput 
– notably, dual-column nanoLC setups increase the analysis throughput by decreasing wait 
times for sample loading and column regeneration(14, 68). Such innovations may capture the 
superior ionization efficiency of ultralow-flow LC and CE methods while overcoming their 
drawbacks.  

The time needed to separate peptides determines the throughput of the analysis. Thus, multiple 
methods have focussed on reducing the duration of the separation and more recently on 
staggering the separation of multiple concurrent samples via a method termed timePlex(69). 
These approaches will be discussed in the section on increasing throughput.       

 

Data acquisition and analysis 
The methods used for acquiring mass spectra for single-cell proteomics can be broadly divided 
into data dependent acquisition (DDA) and data independent acquisition (DIA). DDA methods 
were more common with the earlier approaches while DIA methods have increased in popularity 
over the last 5 years. DDA and DIA methods are also used for acquiring spectra from bulk 
samples and have been extensively reviewed in the literature, e.g., ref.(70). Here we will 
highlight only aspects directly pertinent to maximizing sensitivity for single-cell proteomics. 
 

Increasing the efficiency of ion utilization  

Improving ion utilization efficiency can directly translate to enhanced sensitivity in single-cell 
proteomics. By maximizing the fraction of ions that are captured and fragmented, more peptide 
ions can be detected from each cell, increasing proteome coverage. 
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Isolating ions with wide windows   

One strategy is to use wider precursor isolation windows in DIA acquisitions, as implemented by 
Derks et al., 2022 with the development of the plexDIA method(71). Wide isolation windows 
allow multiple precursors to be co-isolated and fragmented in parallel during DIA, thus 
increasing the total ions sampled per MS/MS scan(16, 72). This approach enables longer ion 
accumulation times and higher signal for low-abundance peptides, outweighing the increase in 
spectral complexity when sample complexity is lower. In practice, Derks et al. achieved 
single-cell analyses on Q-exactive classic using only four very wide isolation windows for MS2 
scans, which permitted ~300 ms accumulation times, thereby supporting sensitive analysis on 
an MS instrument from 2010. Wider isolation windows have also been used with DDA to 
co-isolate multiple precursors simultaneously, thus  increasing ion utilization and the number of 
identified peptides(73).  A notable tradeoff of wide isolation windows is the reduction of the 
specificity of associating precursors and fragments, which adversely affects sequence 
identification. The optimal window width and other acquisition parameters may be optimized by 
open source data driven pipelines, such as DO-MS(74).    

Parallel ion accumulation and separation 

A second, complementary strategy is the integration of ion mobility separation to improve ion 
utilization. Trapped ion mobility spectrometry (TIMS) coupled with parallel accumulation–serial 
fragmentation (PASEF) on timsTOF instruments increases duty cycle efficiency by concentrating 
ions and synchronizing their release for MS/MS(75). For example, slice-PASEF continuously 
scans the quadrupole across the mobility dimension to fragment most ions and increase ion 
usage in each TIMS frame(76). This method boosts sensitivity and proteome depth for tiny 
samples while allowing for a short duty cycle compatible with short separation times and thus 
more single cells analyzed per unit time. Increasing the resolution of ion mobility separation can 
further increase the efficiency of this category of methods(77). 

Efficient ion handling and detection  

A third key strategy for increasing ion utilization – and thus sensitivity – is to improve the mass 
spectrometer’s ion transmission and detection efficiency through advanced hardware design. 
This approach has been used by many instruments (as discussed below) and is particularly 
emphasized with the Orbitrap Astral mass spectrometer that significantly reduced losses from 
ion injection to detection. Its dual-stage analyzer (Orbitrap plus the high-speed Astral analyzer) 
uses enhanced ion optics (e.g. high-capacity funnels and optimized quadrupoles) and a 
parallelized acquisition scheme to achieve Active Ion Management with highly efficient ion 
transport(33). This means a greater proportion of ions generated from a single cell reaches the 
detector. As a result, even narrow window DIA (which by design filters out most ions) can 
identify over 5,000 proteins from 250 pg of HeLa digest(35, 78). Wider isolation windows further 
improve the efficiency of ion utilization and increase proteome coverage.  
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Intelligent data acquisition  
Real-time control of MS acquisition has contributed to single-cell proteomics by intelligently 
guiding data acquisition to increase peptide identification, data completeness and depth. 
Traditional topN data-dependent acquisition stochastically selects the most intense precursors, 
often missing lower-abundance yet biologically relevant peptides and yielding run-to-run 
variation. Real-time acquisition strategies mitigate this limitation. For example, MaxQuant.Live 
interfaces with Orbitrap instruments to detect thousands of predefined precursors by adapting 
the acquisition parameters for MS/MS based on the measured retention times(79). As another 
example, Real-Time Search (RTS) on Thermo Tribrid Orbitraps uses an on-the-fly database 
search of MS2 spectra to guide acquisition(80). In an RTS-enabled method, the mass 
spectrometer’s linear ion trap can rapidly identify a peptide sequence during acquisition; If a 
confident ID is found, the instrument triggers advanced scans (such as an Orbitrap MS2 or 
MS3) for quantification when using isobaric mass tag, such as TMTpro. These real-time control 
strategies markedly improve the efficiency of MS, both for bulk and single-cell proteomics.  

Prioritized Single-Cell Proteomics (pSCoPE), developed by Huffman et al. (2023), introduced a 
multi-tier prioritization schema implemented by real-time retention time alignment and control of 
data acquisition(40). In pSCoPE, each peptide from an inclusion list is assigned a priority level, 
so that high-priority precursors are consistently selected for MS/MS in every single-cell run, and 
accumulated for longer if deserved for increased sensitivity. This real-time prioritization led to 
more consistent peptide identification across cells (greater data completeness) and doubled the 
proteins quantified per cell compared to standard methods. Notably, instrument time is allocated 
to peptides that are identifiable (or biologically relevant), improving proteome coverage and 
sensitivity. The prioritization can even allocate longer ion injection times to low-abundance 
priority peptides, increasing their MS2 signal and further increasing sensitivity and depth. 
pSCoPE is relatively accessible since it’s implemented by free software and can be used with 
many Thermo instruments, including all Q-Exactive and Exploris instruments. When used on a 
Q-Exactive classic instrument, pSCoPE allowed quantifying about 1,500 proteins per human cell 
while achieving over 90% data completeness across many single cells(40). Beyond the initial 
report, pSCoPE has been used to analyze single cells from primary mouse and human 
tissues(5, 61).  

Other approaches for intelligent data accusation use real-time search on Thermo Tribrid 
instruments. By performing an immediate database search on each MS2 spectrum, the 
RTS-enabled Orbitrap Eclipse only triggers an MS3 scan (with synchronous precursor selection, 
SPS) if the peptide was identified in real time. This approach curtails co-fragmentation 
interference and ratio compression: only fragment ions from the identified peptide are used in 
the MS3 quantification, minimizing contamination from co-isolated species. Furtwängler et al. 
demonstrated that an RTS-SPS-MS3 method on a Tribrid yields higher quantitative accuracy 
than classical MS2, while a related RTS-based MS2 strategy (termed RETICLE) achieved 
>1,000 proteins quantified per cell(81).  

In summary, real-time control of data acquisition by prioritization and Thermo RTS both 
exemplify how intelligent, on-the-fly control of MS acquisition refines peptide selection, 
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increases single-cell proteomic depth, and diminishes interference for more reliable 
quantification. These approaches are particularly advantageous when multiplexing single cells 
with isobaric mass tags, e.g., TMTpro. Other approaches for real-time intelligent data acquisition 
have been reviewed in ref.(82). While applicable to single-cell proteomics in principle, they have 
not yet been applied. Some approaches have been applied to DIA(83) and specifically 
optimized for single cells(84). 

 

Using carriers 
The limited copy number of proteins present in single cells pose challenges to sequence 
identification. This challenge can be mitigated by using isobaric or isotopologous carriers. These 
are larger proteome samples, sometimes spiked peptides, that are labeled by mass tags and 
combined with single cells labeled by mass tags. Isobaric carriers use isobaric mass tags and 
enable the pooling of peptide fragments from the carrier and the single cells in each 
fragmentation spectrum, which provides more fragments for sequence identification(25, 28). As 
discussed in other sections, isobaric carriers helped establish the feasibility of single-cell 
proteomics by MS(85). Isotopologous carriers rely on the coelution and the known mass offset 
between the carrier and the single-cell peptides to propagate sequence identifications(71, 86). 
They have been used both with bulk samples(87) and with single cells and single nuclei(88, 89). 
The amount of both isobaric and isotopologous carriers needs to be balanced according to the 
experimental objectives(25) to mitigate adverse effects in quantification(90) and according to the 
community guidelines(58).       
 
 

Technological advances of instrumentation 

Recent hardware innovations have substantially improved single-cell proteomics sensitivity by 
maximizing ion transmission, handling, scanning speeds, and ion detection. Refinements in 
nano-electrospray ion sources now produce significantly more peptide ions from picogram-scale 
samples. These brighter ion sources, when paired with enhanced ion optics (such as 
multi-stage ion funnels and high-transmission ion guides), reduce ion losses between the 
source and analyzer.  

For example, the Bruker Captive Spray Ultra source (with a larger capillary and optimized vortex 
gas flow) and updated ion funnel interfaces significantly increase ion transfer efficiency. 
Concurrently, faster and more parallel data acquisition architectures have raised MS/MS 
scanning speed without sacrificing sensitivity. The timsTOF Ultra’s trapped ion mobility 
spectrometry (TIMS) tandem-MS system exemplifies this: a dual-TIMS design continuously 
accumulates ions in one chamber while releasing them from a second, achieving highly efficient 
duty cycle via Parallel Accumulation–Serial Fragmentation (PASEF). Coupled to a fast 
time-of-flight analyzer and advanced 14-bit digitizers, this allows high MS/MS scan rates that 
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facilitate high peptide sampling density across chromatographic peaks. Moreover, integrating 
ion mobility separation not only boosts duty cycle but also adds an extra dimension of 
gas-phase separation (by collisional cross-section), which reduces spectral complexity and 
improves detection of low-abundance peptides. These hardware advances have translated into 
deeper proteome coverage from small inputs. For example, recent label-free single-cell runs on 
the timsTOF Ultra 2 achieve on the order of 4,000 - 5,000 protein groups identified per Hela cell. 
These improvements make feasible analysis of single organelles and much smaller primary 
single cells, albeit with much lower proteome coverage, thereby delivering on the biological 
promises of the technology(5, 37, 89, 91).   

As another example, the Orbitrap Astral mass spectrometer enables parallelized and fast scans 
by using a dual-analyzer design featuring an Orbitrap (for MS1) coupled to a new high-speed 
Astral time-of-flight analyzer(33). The Astral analyzer uses an asymmetric ion flight path and a 
dual-pressure linear ion trap (ion processor) to achieve high sensitivity and 200 Hz MS/MS 
throughput at low ion accumulation times. This parallelized ion handling pipeline allows multiple 
ion packets to be processed simultaneously (two in the ion trap, one in the multipole, and others 
being detected in Orbitrap and Astral), effectively aligning the Astral’s 200-Hz MS/MS 
acquisition with adequate ion cooling time. Crucially, the efficient ion transfer and extended flight 
path of the Astral analyzer preserve ion signals across a wide dynamic range. By decoupling full 
scans and fragment scans between two analyzers, the Orbitrap Astral maximizes both 
sensitivity and speed – enabling high proteome depth from ng and pg level samples(33). Recent 
studies report that the Orbitrap Astral can identify about 5,000 protein groups from single Hela 
cells in label-free analyses(35, 78). 

 

Analysis of mass spectra 
Identifying and quantifying peptides from mass spectra acquired from single cells has relied 
mostly on the same algorithms and software tools as those used with bulk samples(92–95). 
These tools have been extensively benchmarked and reviewed in the literature and will not be 
reviewed here. Rather, we will focus on methods more specific to single-cell proteomics.   
 
One such group of methods increases data completeness by propagating peptide identifications 
from single cells (or reference/carrier samples) where a peptide is confidently identified to cells 
where it is not. For example, DART-ID was specifically motivated by single-cell proteomics data 
and implements Bayesian frameworks for global retention time alignment and for incorporating 
these estimates towards improved confidence estimates of peptide spectrum matches(96). 
Similarly, IceR(97) and IonQuant(98) can propagate peptide sequence identification and 
improve proteome coverage and data completeness in single-cell proteomics.  Despite using 
such methods, low data completeness often remains a challenge in single-cell proteomics data 
and needs to be addressed by downstream computational methods(99). This downstream 
analysis remains underdeveloped in the context of single-cell proteomics and is beyond the 
scope of this review. We will just note that missing data leads to fundamental uncertainty in the 
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results; this uncertainty needs to be propagated and reflected in the conclusions, for example by 
using multiple imputation approaches(58).  
 
 

Increasing throughput 
Major approaches for increasing the throughput of single-cell proteomics analysis include (i) 
shortening of peptide separation times, (ii) multiplexing single cells, and (iii) multiplexing peptide 
isolation and fragmentation for MS2 analysis as performed with DIA and wide window DDA 
analysis. Based on the degree of multiplexing, methods can be classified as not multiplexed 
(label free DDA), multiplexing only samples (TMT-DDA), multiplexing only peptides (label free 
DIA) and multiplexing both samples and peptides (plexDIA and timePlex), as shown in Figure 2. 
The sections below briefly outline these methods within a coherent conceptual framework.   
 

Short separation times 

One straightforward approach to increase mass spectrometry (MS) proteomics throughput is to 
shorten liquid chromatography (LC) separation times – for example, using rapid gradients, 
which are easily implemented with high-flow methods. Fast gradients (as short as 2–5 minutes) 
have been demonstrated in combination with DIA(100, 101). Specialized LC systems (e.g. 
Evosep) use pre-formed gradients to run over 100 injections per day with high reproducibility. 
However, decreasing chromatographic time reduces peptide separation, leading to less efficient 
separation. This may compromise proteome depth, especially for very short gradients, and may  
increase ionization suppression and interference. In practice, modern high-throughput workflows 
often seek a balance, using moderate gradient lengths or added separation dimensions (e.g. ion 
mobility) to preserve proteome coverage even as sample throughput increases. As the speed of 
new instruments increases, so does the coverage for short separations. Thus, newer 
instruments with fast scanning speeds enable throughputs of 100 single cells per day using 
label free DIA methods with relatively small tradeoffs in the depth of protein coverage. Yet, label 
free methods remain limited in achieving affordable single-cell proteomic analyses(102).  
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Figure 2. Categories of data acquisition methods based on the degree of parallelization. Data 
acquisition can be paralleled both across samples (single cells) and across proteins (number of 
simultaneously isolated and fragmented peptides). The figure is modified from ref.(103).    

 

Multiplexing samples with isobaric mass tags 

Another major strategy to scale up proteomic throughput is sample multiplexing via isobaric 
labeling. Tandem mass tag (TMT) reagents (including TMTpro) allow pooling of many samples 
(up top 35 with the latest TMTpro reagents) and analyzing them in a single LC-MS/MS run. In 
single-cell proteomics, this approach (exemplified by SCoPE-MS/SCoPE2/pSCoPE) tags 
peptides from individual cells with different TMT labels and combines them, so that one MS run 
quantifies multiple single cells simultaneously. This parallelizes data acquisition at the sample 
level. Beyond increasing the throughput, isobaric mass tags allow the use of carriers (that pool 
and increase the detectable peptide fragments), which supports sequence identification. This 
benefit enabled some of the early studies that established the feasibility of single-cell MS 
proteomics(25, 28), and it continues to support analysis with older MS instruments.  

In practice, TMT multiplexing has enabled the quantification of over 2,000 protein groups per 
cell. When combined with shorter gradients to increase throughout, it supports analyzing over 
1,000 single cells per day while quantifying about 1,000 proteins per cell(15). The sensitivity and 
depth of coverage of these workflows are increased by using real-time instrument control 
(real-time search, prioritization) to help maximize MS/MS utilization for each run. A notable 
limitation, however, is that isobaric tags multiplex only at the sample level – the mass 
spectrometer still selects and fragments precursors sequentially, one at a time. As a 
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consequence, conventional TMT-MS workflows remain limited by the MS/MS speed and cannot 
fully exploit modern MS instruments’ capacity for parallel fragmentation. This can particularly 
limit the number of analyzed peptides from single cells since sensitive protein analysis benefits 
from longer ion accumulation times(16). Another limitation is the impact of co-isolation on 
quantification accuracy, which has been extensively discussed in the literature, e.g., as reviewed 
in ref.(104). The combination of isobaric labeling with SILAC can further increase the sample 
throughput though at the expense of limiting the number of MS/MS (and thus quantifiable 
peptides) that can be performed per single cell per unit time(105).  

 

Multiplexing both samples and peptides  

Beyond multiplexing only samples (as enabled by isobaric mass tags), throughput can be 
further increased by multiplexing both samples and peptides. Such multiplexing can be 
achieved in the mass domain (plexDIA), in the time domain (timePlex), or in both domains 
simultaneously (Figure 2). These recent approaches chart a trajectory towards analyzing over 
1,000 single cells per day without significant compromise in the accuracy and depth of 
proteomic analysis, as discussed below. 

 

Multiplexing in the mass domain  

One approach for multiplexing both samples and peptides is multiplexed DIA (plexDIA), which 
uses non isobaric mass tags that encode each sample with a distinct mass/charge shift instead 
of identical isobaric masses. Originally demonstrated with mTRAQ mass tags(71), plexDIA was 
subsequently implemented with dimethyl tags(88), diethyl tags(106) and PSMtags(107). While 
plexDIA has been used in multiple biological single-cell proteomics studies(5, 89, 108), the 
utilized mass tags (mTRAQ) generally resulted in slightly lower coverage than the 
corresponding label free DIA can achieve. Yet, plexDIA tags may be optimized to improve 
sensitivity and amino acid sequence identification(86). To explore this potential, recent work 
screened a library of potential mass tags and introduced a tag termed PSMtags(107). By 
increasing the number of detected peptide fragments, PSMtags enhance sequence 
identification and support sequence identification for plexDIA proteomics. They also increase 
the throughput by supporting 5-plex (when using 4Da offsets) or 9-plex (when using 2Da 
offsets). Analyzing 9-plex samples of single-cell level standards on a 30 min gradient quantified 
over 3,000 proteins per sample. Extrapolating these results to 10min total analysis time per 
9-plex single-cell sets suggests the potential of analyzing over 1,000 single cells per day per 
instrument without the tradeoffs of isobaric tags, reduced proteome coverage and quantification 
affected by coisolation.    
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Multiplexing in the time domain 

Another complementary approach for multiplexing both samples and peptides relies on 
multiplexing in the time domain and is accordingly named timePlex(69). In timePlex, samples 
are encoded by time offsets. A demonstrated implementation uses multiple staggered sample 
injections that introduce in the same MS instrument multiple samples with slight time offsets. For 
example, three single-cell samples can be injected sequentially a few minutes apart such that 
their active gradients interleave but remain distinguishable by the fixed time delays. Since 
multiplexing in the time and mass domains is multiplicative, combining 3-timePlex with 9-plex 
DIA results is 27-plex DIA, i.e., 27 samples per LC-MS run (3 time-offset injections × 9 
mass-tagged samples). Crucially, this highly parallelized data acquisition increased the sample 
throughput without reducing the protein coverage per sample(69). This enabled over 500 
samples per day to be processed on one instrument, with a clear path to exceed 1,000 cells/day 
by further increasing plex levels in the time and mass domains. These promising prospects for 
increasing the throughput require robust implementations before they can be broadly adopted.  

 

Analyzing highly multiplexed mass spectra  

As discussed above, the approaches increasing throughput, include short separation times and 
parallelization in the time and mass domains. All of these approaches also increase the density 
of mass spectra, and thus the potential for overlap and interference between mass peaks of 
different ions. To address these challenges, software tools like DIA-NN and Spectronaut have 
developed dedicated modules to support plexDIA(93). These challenges motivated new tools, 
such as JMod, specifically developed to support multiplexing in both the mass and time 
domains(106). JMod performs joint modeling of overlapping signals to maintain quantification 
accuracy even when the isotopic envelopes of peptides from different multiplexed samples are 
overlapping. As the success of these tools attests, computational algorithms are an essential 
component supporting increasing proteomics throughput.   

 

Mechanistic Inference 
A central promise of single-cell proteomics is the ability to help directly infer molecular 
mechanisms operating within cells by measuring the agents mediating these mechanisms – 
proteins and their interacting partners. Most biochemical interactions and signaling events 
involve proteins: enzymes modify substrates, receptors and kinases transmit signals, and 
multi-protein complexes execute functions. Therefore, if data for proteins is missing when 
modeling biological networks, they become unobserved confounders, hindering causal 
inference. Inferring such missing data from indirect proxies is unlikely to help much, as 
conditioning on confounders depends on high accuracy and precision measurements.   
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Causal inference from observational data in the presence of unobserved confers is 
fundamentally limited regardless of the algorithms used or the scale of the dataset(109). This 
problem is even harder if relying on RNA associations as statistical RNA associations often do 
not reflect direct biophysical interactions. Inferring direct causality from observational data alone 
is a notoriously hard problem: confounding variables and indirect effects can produce spurious 
associations . Even with infinite observational data, purely statistical approaches (akin to factor 
analysis) may fail to pinpoint true causal drivers due to fundamental ambiguities(109). In other 
words, correlation-based network inference can be fundamentally underdetermined – multiple 
causal models can explain the same correlation pattern, especially in high-dimensional 
biological data. 

Statistical association vs. biophysical causality 

It is important to distinguish between two very different approaches to understanding causality in 
cell biology: statistical inference from observational data versus mechanistic modeling based on 
biophysical principles. Single-cell omics data (whether proteomic or transcriptomic) often invite 
the use of statistical or machine-learning methods to find associations – for example, inferring 
regulatory networks by correlating the abundance of RNA or proteins across cells(110–112). 
While such data-driven inference can suggest hypotheses, association is not causation. As a 
simple example, if protein X and protein Y are both elevated in a subset of cells, traditional 
correlation analysis might link them, but this could be because X and Y are co-regulated by 
some unseen factor Z rather than X causing Y or vice versa. Furthermore, the association 
between X and Y may be indirect, mediated by intermediate molecules that are highly context 
and condition dependent. Thus, such indirect associations are likely to vary across conditions, 
and models built upon them are unlikely to generalize.     

Mechanistic, biophysical models take a different approach. Rather than relying on statistical 
associations alone, they incorporate known principles of chemistry and physics – such as 
binding affinities, enzymatic kinetics, and signaling pathways – to model how a system behaves. 
Crucially, the MS based technologies reviewed in the preceding sections have the potential to 
quantify such protein functions at scale, albeit this potential has not yet been realized. Thus, 
realizing this potential by comprehensive quantification of protein abundance and activities in 
single cells can better support the development of mechanistic models.  

Biophysical models explicitly represent direct molecular interactions: for example, a model might 
include the reaction Protein A phosphorylates Protein B, with the associated rate constant. By 
building on such interactions, mechanistic models can simulate the dynamic behavior of a cell 
under various conditions. A key advantage is generalizability: a model grounded in true causal 
mechanisms is likely to hold even when conditions change, whereas a statistical model trained 
on one condition may break when extrapolated. For instance, a co-expression network might 
not predict what happens in a drug-treated cell, but a mechanistic model of the signaling 
pathway can, because it encodes causal relationships that persist under the intervention. 
Mechanistic models thus align with the idea of functional causality – they aim to explain why a 
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change occurs by referencing an underlying physical interaction, not just that two variables are 
correlated. 

Conditioning on confounders  

Developing mechanistic models requires rich data and direct measurements of the relevant 
variables, which is where single-cell proteomics can contribute. By providing measurements of 
actual effectors and signaling molecules, single-cell proteomic data make it easier to apply 
causal reasoning tools that go beyond associations. For example, if a computational method is 
trying to infer a protein regulatory network, having protein data for transcription factors (the 
direct regulators) will constrain the model to biologically plausible interactions (a modified 
transcription factor protein directly influencing target gene expression) rather than indirect 
transcript-transcript correlations. Early single-cell proteomic data have already provided 
evidence that the abundance of transcriptional factors (e.g., P53), unlike its transcript, is 
associated with the abundance of its target transcripts(26). Thus incorporation of protein data 
may help with the challenges of association-based inferences of transcriptional networks based 
in RNA-seq data(110). 

  

 

Figure 3. Distinguishing between direct and indirect regulation (A) Simulated data in which the 
joint variation of proteins X and Y. It illustrates that the interaction between X and Y is indirect, 
mediated by Z. (B) Another simulated example suggesting a collider model, where X and Y both 
influence Z, creating a conditional dependency between X and Y when accounting for Z. Arrows 
represent causal regulation (either activation or repression), and in the collider scenario, one 
arrow denotes positive regulation while the other indicates negative regulation. The figure is 
from ref.(111). 
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Transcending association-based inferences requires accounting for confounders, as illustrated 
in Figure 3. In causal inference terms, measuring intermediate nodes (proteins) in the cellular 
network can satisfy the conditions for identifying causal effects (e.g., by blocking hidden 
confounding paths). Indeed, one strategy to infer causation from observational data is to find 
negative controls or mediators that help isolate direct effects . When conditioning on confounded, 
it is essential that they are measured accurately since measurement noise can induce (rather 
than remove) spurious associations. Such accurate measurements are more feasible to achieve 
for proteins since MS methods can sample hundreds of copies per cell as opposed to the few 
copies sampled by single-cell RNA sequencing methods(26, 32).  This type of causal inference 
relies solely on statistical dependencies observed across many single cells, but it critically 
depends on accurate single-cell measurements. 

 

Observing immediate responses to specific perturbations 

Still, even with comprehensive single-cell protein data, purely observational inference has clear 
limitations. Definitive causal claims require observing the system response to targeted 
perturbations that modulate specific regulators. The perturbations need to be specific, affecting 
known proteins, rather than generic, e.g., treatment with a drug with unknown targets. The 
responses should be measured quickly after the perturbation since delayed responses are likely 
to include, even be dominated, by indirect secondary effects. One promising approach in this 
direction can be targeted protein degradation(113) followed by single-cell MS analysis soon after 
the targeted proteins are degraded.    

In summary, statistical association-based inference can generate correlations and network 
hypotheses from single-cell data, but these are often confounded or incomplete. They 
generalize poorly outside of the training distributions. Biophysical models based principles 
provide a way to interpret data in terms of direct molecular interactions. They are more likely to 
reflect causation and generalize beyond the training distributions. Single-cell proteomics helps 
bridge the two, by supplying the rich, mechanistically relevant data needed to inform and 
constrain biophysical models. As the field progresses, we expect a convergence of data-driven 
inference with mechanistic knowledge, yielding predictive models of cells that are both 
data-grounded and principle-based. 
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Outlook  
Over the last decade, mass spectrometry analysis of proteins from single cells has transitioned 
from an area of skepticism to a robustly demonstrated and actively developing research field. 
The field has numerous clear technical objectives for progress, such as increasing the 
throughput and depth of protein analysis, and increasing the scope and accuracy of 
quantification of post translational modifications (PTMs). While variable search for PTMs could 
identify PTMs from the very beginning(28, 114), dedicated methods that can focus on the PTM 
by prioritized data acquisition(40) or spike-in peptide(87) can increase the scope and accuracy 
of PTM analysis. Still, more technological and methodological developments are needed for 
expanding the breadth and consistency of PTM quantification and protein activities towards 
enabling the mechanistic biophysical models discussed above. Advances towards these 
technical objectives can be realized by improvements of the fundamental analytical steps 
reviewed in this article, from mass tags and experimental designs to creative new data 
acquisition and analysis methods. These steps are advancing quickly, and their gains will 
continue to synergistically contribute towards increasing scope and accuracy of single-cell 
protein analysis, including of protein functions.   
 

The biological applications of single-cell proteomics have proceeded from the very beginning to 
investigate cell fate transitions, macrophage polarization, cell lineage hierarchies, and drug 
resistance. Yet, the realization of the full potential for biologically driven research has generally 
lagged behind the technical capabilities of the technology and methods. Thus, a major 
opportunity for the field is to make the technology more accessible and better integrated with 
broader communities to enable diverse research objectives, including the mechanistic 
biophysical models advocated here.  

Indeed, when combined with carefully designed perturbation experiments, single-cell proteomics 
may offer an exceptionally powerful route to mapping causal mechanisms: one can perturb a 
protein’s activity and directly observe downstream protein-level effects in each cell, linking 
cause and effect with molecular resolution. This synergy of mechanistic measurement and 
perturbation-based validation is likely to be the gold standard for building reliable causal models 
in biology. 
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