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Limiting the impact of protein leakage in
single-cell proteomics

Andrew Leduc1 , Yanxin Xu2, Gergana Shipkovenska2, Zhixun Dou 2 &
Nikolai Slavov 1,3

Limiting artifacts during sample preparation can significantly increase data
quality in single-cell proteomics experiments. Towards this goal, we char-
acterize the impact of protein leakage by analyzing thousands of primary
single cells from mouse trachea. The cells were prepared either fresh imme-
diately after dissociation or first cryopreserved and prepared at a later date.
We directly identify permeabilized cells by imaging a cell permeable dye and
use the data to define a signature for protein leakage. This signature is similar
across diverse cell types and reflects increased leakage propensities for cyto-
solic and nuclear proteins compared to membrane and mitochondrial pro-
teins. A classifier based on the signature allowed for the accurate identification
of permeabilized cells across cell types and species. The classifier is integrated
into QuantQC (scp.slavovlab.net/QuantQC) to support its application to
diverse samples and workflows.

Recent advances in throughput of single-cell proteomics by mass
spectrometry have made it possible to quantify thousands of proteins
across thousands of single cells and organelles1–5, including primary
cells3,6–9. This will facilitate characterizing the influence of protein
abundance, modification, synthesis and degradation on shaping the
functions of single cells in heterogeneous tissue samples10. Realizing
this potential requiresminimizing changes in cells and proteins during
the sample preparation, such as those that may be introduced by
storage of dissociated tissue samples. However, freezing samples for
short- or long-term storage may damage cells11,12 and lead to potential
bias in single-cell proteomics data.

Indeed, such effects have been observed in single-cell RNA
sequencing, where transcripts have been found to leak out of cells
with damaged membranes depending upon their localization in or
outside of the mitochondria13. These cells are usually filtered out
computationally based on a heuristic cut off which varies depending
on the cell type13,14. However, an analogous characterization has not
been performed in single-cell proteomics. Proteins vary significantly
in subcellular localizations, physical properties and binding inter-
actions, all of which may substantially affect their leakage propen-
sities. Additionally, proteins are about tenfold smaller than the

mRNA that template them, making them more likely to leak upon
membrane damage. For these reasons, we sought to characterize
this effect.

Here, we show that protein leakage can affect protein quantifi-
cation in mammalian cells frozen prior to sample preparation. We
demonstrate that cells affected by protein leakage can be identified
and excluded from analysis by using cell permeability staining or less
directly by using a computational model that we develop and make
available as part of an open source R package available at: https://
github.com/SlavovLab/QuantQC.

Results
We chose to work with primary tissue, mouse tracheal epithelium, to
characterize the effect ondiverse cell types. After dissociation using an
enzyme cocktail as previously reported15, half of the cells were slowly
frozen to –80C in 10% Dimethyl sulfoxide (DMSO) and 90% Fetal
Bovine Serum (FBS) and prepared later, and the other half were
immediately prepared fresh for single-cell proteomic analysis. Using
nPOP with TMTpro 35-plex multiplexing, we prepared a total of 2784
single cells, 928 fresh and 1856 frozen. Samples were analyzed using
the prioritized data acquisition (pSCoPE)6 at a rate of 1018 cells/day
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and averagedepthof 712proteins quantifiedper cell. Summary reports
of all data can be found in Supplementary Data 1 (frozen cells) and
Supplementary Data 2 (fresh cells). Prior to cell isolation, the cells were
stained with Sytox green to identify cells with compromised mem-
brane permeability. We recorded the stain intensity of each cell and
linked these measurements with downstream single-cell data using
QuantQC (Fig. 1a). The distribution of Sytox green intensities across all
single cells is bimodal, and the cells from the mode at 0 intensity were
characterized as intact while the cells from the other mode as
permeable (Fig. 1a). Further, the distribution of cell sizes from the two
modes were indistinguishable within a cell type, suggesting that
intensity difference is not due to cell size difference (Supplementary
Fig. 1a). The Sytox green negative cells were 96% for fresh and 72% for
frozen ones. The large increase in permeability for club cells may

reflect their more fragile state, which has been noted in attempts to
culture these cells16.

We then assigned cell types by using the LIGER17 algorithm to
perform label transfer from a previously annotated single-cell mRNA
data set15,17. The correspondence to the single-cell mRNA data set
was lower in frozen samples compared to the fresh. This was
observed by reduced agreement in covariance patterns between
shared genes18 (Supplementary Fig. 1b). We also observed co-
clustering of permeabilized cells in the frozen sample (Fig. 1b). We
did not observe a separate permeable cell cluster in the fresh sam-
ples, whichmay have been due to the low number of permeable cells
(Fig. 1b). Despite the lower confidence in integration score and co-
clustering of permeabilized cells, we were still able to confidently
assign cell types in the frozen condition based on the abundance of
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Fig. 1 | Quantifying protein leakage artifacts. a Images of cells in the CellenONE
nozzle taken with brightfield and with the green fluorescent channel. The two cells
shown are not clearly distinguishable from the brightfield but one cell is permeable
and thus positive for the Sytox green fluorescent dye. b The UMAP dimensionality
reduction shows co-clustering of cells from fresh and frozen batches that were

recorded as permeable via Sytox green. c Percentages of permeable cells for the
two sample handling conditions are shown in the dot plot. dDifferences in protein
fold changes between permeable and intact cells for all proteins. e Differences in
protein fold changes between permeable and intact cells are categorized by sub-
cellular compartment.
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marker proteins for each cell type (Supplementary Fig. 1c–f). The
proportion of permeable cells was unevenly distributed across cell
types (Fig. 1c). This may reflect both the increased fragility of the
more significantly affected cell types and the methods used for
single-cell dissociation.

We next examined which proteins exhibited a significant change
between permeable and intact cells (Fig. 1d). Most altered proteins
were depleted from the permeabilized fraction, indicating that pro-
teins leaked out from the cells characterized as permeable. The few
proteins slightly more abundant in the non-permeabilized cells could
suggest a cellular response pre-membrane rupture, but more likely
reflects a small amount of measurement noise in estimating fold
changes for proteins that do not leak.We also characterized the extent
to which the reduction in protein levels was specific to different sub-
cellular compartments. To this end, we plotted the difference in pro-
tein abundance between different subcellular compartments (Fig. 1e).
Similar to the trends observed in mRNA sequencing, mitochondrial
protein abundance is not significantly different between permeable
and intact cells. In contrast, proteins localized to the cytosol have the
most significant decrease in abundance between intact and permeable
cells. Variation across the distribution of cytosolic proteinsmay reflect
several factors. Certain proteins may differentially participate in large
complexes that prevent easy escape from even a rupturedmembrane.
Additionally, this variation may reflect inexact localization knowledge

of these proteins. Examining specific proteins reveals metabolic
enzymes such as peroxidases and enzymes involved in glycolysis such
as Gapdhwith approximately twofold reduced abundance. A full list of
proteins with their fold change differences can be found in Supple-
mentary Data 3.

To examine the generalizability of the protein leakage artifact, we
estimated the average fold change for each protein between perme-
able and intact cells between cell types with greater than 5 permeable
cells (Fig. 2a). Significant agreement of fold changes across cell types
suggests that a similar mechanism of protein leakage is operating
across cell types. However, weaker agreement between immune cells
and other cell types may reflect a cell type specific component. The
similarity in fold changes between cell types led us to explore the
utility of a classifier for identifying cells with damaged membranes in
data sets where permeability staining was not used. To do this, we
trained an XGboost model on cell permeability status using the
abundances of the top 75 most significantly leaking proteins. XGboost
was chosen for its ability to handlemissing data, aswe preferred to not
use imputed values in the classification task. To validate ourmodel, we
first trained and tested it on the same cell type leading to a high suc-
cess rate of classificationon the testing setwith anAUC=0.92 (Fig. 2b).
We then sought to see howwell themodel could generalize by training
it on fibroblasts, basal and immune cells and testing on basal cells.
Performance decreased slightly but a significant portion of permeable
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Fig. 2 | Examining and predicting cell permeability in human cell lines. a Log2
average protein fold changes between permeable and intact Club cells and Fibro-
blasts are plotted against each other and show Pearson correlation of 0.66. The
heatmap summarizes correlations between fold changes for all cell types is shown.
b ROC curve for a classifier trained on permeability status of single cells using
protein abundanceprofiles of the top75most significantly leaking proteins. Results
for the model trained and tested on the same cell type are in red and trained and

tested on different cell types are in black. c PCA projection of single cells from
Leduc et al., 2024. Cells are colored by cell type or their permeability score from the
classifier. The cells towards the center of the two dimensional space of the first two
principal components were enriched for high permeability scores. d When com-
paring the fold changes between cells with probability over 0.2 and under 0.2 to be
permeable versus intact fold changes from the primary mouse tracheal cells, the
fold changes strongly agree, Pearson correlation 0.50.
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cells could be identified, AUC =0.86, Fig. 2b. This may be partly the
result of cell-type dependent leaking that may vary across cell types
due to shifts in protein abundance and localization patterns. To facil-
itate easy usage of the classifier, it was incorporated into the QuantQC
R package1.

To validate that this phenomenon was generalizable and not
just specific to these samples, we next inspected a previously pub-
lished data set of three human cell lines fromour lab1. We trained our
classifier for a final time on the entire mouse trachea data set and
applied it to the human cells. Upon clustering and low dimensional
projection in the principal component space, a population of cells
closer to the center of the PCA space from each cell type was clas-
sified to have a high probability of permeabilization (Fig. 2c). We
then compared the protein abundances between cells with prob-
ability greater or less than 0.2 of being permeable as assigned by the
classifier. Fold changes between permeable and intact cells from our
mouse trachea data set and found strong agreement with the human
cell line fold changes (Fig. 2d). This strong agreement suggests these
cells may suffer from the same artifact, albeit this does not provide
conclusive validation as no Sytox Green intensity was measured for
the human cells.

Discussion
Our data demonstrate a substantial impact of protein leakage on
single-cell proteomic measurements and a direct resolution based
on excluding permeabilized cells from analysis. We also
provide protein signatures of leakage and classification tools which
may be used to detect and correct for this artifact. Protein leakage
may also be mitigated by additional methods, such as cross-linking
reagents, but we did not evaluate the effectiveness of such
methods here.

While permeabilized cells may be excluded when performing
sample preparation with methods that have fluorescent cell sorting
capabilities, this capability is not ubiquitous. Indeed, recent meth-
ods have been developed using instruments that lack these
capabilities19. In such cases, our classification model can help iden-
tify and correct for this artifact and thus improve data interpreta-
tion. Our results reinforce the importance of incorporating
solutions for this problem in the community guidelines and best
practices2 and point to effective solutions. These solutions will
reduce batch effects for and facilitate the analysis of frozen dis-
sociated tissue samples, enabling experimenters greater flexibility in
future studies.

Methods
Mouse model and handling
All mice experiments were performed in compliance with the Institu-
tional Animal Care and Use Committee at Massachusetts General
Hospital. 4-month-old C57BL/6 mice were ordered from the NIA. Mice
were euthanizedwith CO2 followed by cervical dislocation. Themouse
used was male. Tissues were harvested post-euthanasia and perfusion
with PBS.

Tissue dissociation and cell suspension generation
Freshly dissected whole trachea preparations were submerged in
500 µl of each enzyme dissociation cocktail for 30min with gentle
rocking at 37 °C. Papain (13.3 µ/ml or 10 µ/ml) was dissolved in EBSS
buffer before mixing with activation buffer consisting of 0.067mM β-
mercaptoethanol, 1.1mM EDTA and 5.5mM cystein-HCl in EBSS.
Enzyme mix used for the dissociation protocol consisted of 25 µl of
70 kUml−1 collagenase I, 25 µl of 50 kU/ml hyaluronidase, 50 µl of
7.5 kU/ml DNase, 120 µl of 2.5 µ/ml dispase and 400 µl of 40 µ/ml
papain, to a final volume of 5ml using DMEM. In all cases, single
enzyme incubations weredone for 30min at 37 °Cwith gentle rocking,
whereas the enzyme cocktail mix was incubated for 20min at 37 °C

with gentle rocking. Cells were then either taken directly for single cell
samplepreparation, or frozendown in a cryopreservative buffer of 10%
DMSO and 90% FBS.

Proteomic sample preparation
Samples were prepared using the nPOP sample preparation method
for multiplexed single cell proteomics1. Briefly, single cells were
washed twice from either dissociation buffer or cryopreservation
buffer with 1X PBS. Cells were then resuspended at a concentration of
1000 cells per µL and were incubated on ice and in the dark for 20min
with Sytox Green Dead Cell Stain (Thermo Fisher S34860). Cells were
then washed one final time to remove dye and resuspended in 1X PBS
at a concentration of 300 cells per µL for eventual cell sorting. Cells
were then sorted in a volume of 300pL into 9 µL of 100% DMSO dro-
plets on the surface of a fluorocarbon-coated glass slide for cell lysis
using theCellenONEcell sorter and liquidhandler.As cellswere sorted,
the fluorescent intensity of the Sytox Green stain was recorded using
the CellenONE’s green channel. The cells were isolated based on cell
size and aspect ratios using threshold gates shown in Supplementary
Fig. 2. The single cells were incubated for overnight digestion with the
aid of the CellenONE’s humidifier and slide cooling for evaporation
prevention of droplets. The remaining single-cell suspension was
used for making isobaric carriers and reference with the mPOP
protocol20. Briefly, the cells were pelted and resuspended in mass
spectrometry grade water at a concentration of 1000 cells per µL.
Then, the cells were lysed and the protein digested with 13.5 µL of
digestion buffer of 100 ng/µL Promega trypsin, 0.025% DDM, and
10mM HEPES at pH 8.5.

The next day, the nPOP single-cell samples were labeled with
20 µL of TMTpro 35-plex reagents dissolved in 100% DMSO at a
concentration of 8.3 µg/µL. Cells were labeled in sets of 29 as 126C
and 127N are reserved for carrier and reference channels, 127C is
excluded due to isotopic impurities from the carrier, and we did not
have access to the full 35-plex set at the time of the sample pre-
paration. The labeling reaction was then quenched with 20 µL of 1%
Hydroxylamine. Samples were pooled using the CellenONE in a 50%/
50% solution of Acetonitrile and Water and dispensed into a 384 well
PCR plate, dried down in a speed vac and stored at -20C for later
injection for LC/MS analysis.

Cells frozen at –80 C in water were then lysed using heat at 90C
for 10min following the mPOP sample preparation18. Cells were then
digested overnight at 37 C in 100mM TEAB buffer pH 8.5 and 10 ng/
µL trypsin. Labels 126C and 127N were used to label carrier and
reference samples, respectively. The samples were combined and
diluted in 0.1% formic acid to a concentration of 10 ng/µL of peptide
from the 126C labeled sample for carrier and 0.5 ng/µL from the
reference. Samples from the plate were resuspended in 1 µL of the
carrier mix for injection.

LC/MS analysis
Samples were run on an Exploris 480 mass spectrometer with a Van-
quish Neo liquid chromatography and autosampler. A 25 cm 75 µm ID
IonOptics column was used for the chromatography column. The
gradient ramped from 8% to 40% buffer B (80% Acetonitrile 20% 0.1%
formic acid) over the course of 28minwith a 4min wash at 90% buffer
B at the end. Mass spectrometry data acquisition of single cells was
performed using MaxQuant Live for Prioritized data acquisition with
60k MS1 and MS2 resolution, 118ms maximum injection time and 1e6
maximumAGC6. Briefly, an original inclusion list was generated using a
DIA run of the carrier sample which resulted in roughly 10,000 iden-
tified precursors. This DIA run utilized 60k MS1 resolving power and
45k MS2 resolving power and had 30 equally spaced MS2 windows
from range 400 to 900m/z with 1 DA overlap between MS2 frames.
Themax IT was 50ms for MS2 scans and AGCwas set to 300%. The LC
gradient was identical to that used for the single-cell runs to maintain
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accurate retention times. Priority tiers were assigned at three levels,
which were equally sized and faceted based on precursor abundance,
with highest abundance precursors placed on the highest priority tier.
The inclusion list was then refined using two scout runs to identify and
remove precursors which had low precursor ion fraction below a
value of 0.7.

The DIA run for inclusion list generation used a single MS1 scan
and 26 Th wide MS2 scans spanning 400–900M/Z space with 1 Th
overlap window to window. The chromatography gradient was the
same as specified for the prioritized runs.

Raw and processed data analysis
Raw data from data-dependent and prioritized data acquisition runs
were searched by MaxQuant version 2.4.3.0 against a protein
sequence database including entries from the appropriate murine
SwissProt database (downloaded July 30, 2018) containing 20,386
proteins and known contaminants such as human keratins and
common lab contaminants. The modifications for the TMTpro
35plex tags can be found in the supplemental data of the nPOP
protocol1. Results were filtered at 1% FDR. The DIA run for inclusion
list generation was searched using the DIA-NN software with TMT
specified as a fixed modification.

Downstream data analysis was performed in R. Single-cell data
was processed to obtain a protein X single-cell matrix of log2 rela-
tive protein fold changes using the QuantQC package1. Cell types
were then assigned by integrating of single-cell data with pre-
annotated mRNA sequencing data from the same tissue type
and dissociation procedure15. The LIGER algorithm was used to
project the cells into the same high-dimensional space. Clustering
was performed and protein single cells were assigned the identity of
the predominant annotated mRNA single cells from the given clus-
ter. Fold changes were then calculated between permeable and
intact cells by taking the average fold change of permeable and
intact cells within a cell type for each protein and subtracting the
two vectors.

Compartment GO term curation
To assign proteins to a given compartment, we used only proteins
whose assignment to a specific compartment, i.e., if a protein was
listed in both the cytoplasm and nucleus, it was not used. Thus not all
proteins were used in the analysis of compartment specific protein
leakage.

Cell permeability classifier
The model used to classify permeable vs intact single cells XGboost
was trained on the top 75 most significantly leaking proteins (Sup-
plemental file 3) across single cells. Data was z-scored within each
protein (across single cells) prior to training the model. Missing data
was left as NA. For the within cell type comparison, the 420 club cells
from the Frozen data set were randomly split into train and test sets of
80% and 20% of the data, respectively. For the across cell type com-
parison, the model was trained on all cells except for club cells and
then tested on all club cells.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The rawand searchedMSdata havebeendeposited in accordancewith
community guidelines2 and can be found at MassIVE repository
MSV000094790. Additional processed data can be found at https://
scp.slavovlab.net/Leduc_et_al_2024. Source data are provided with
this paper.

Code availability
The analysis can be reproduced by using resources from https://scp.
slavovlab.net/Leduc_et_al_2024 and following instructions found at
https://github.com/SlavovLab/CellPermeability. The classification tool
has been incorporated into theQuantQCpackage, https://github.com/
SlavovLab/QuantQC via the function FindPermeableCells.
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