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The physiological response of a cell to stimulation depends on its proteome configuration.1

Therefore, the abundance variation of regulatory proteins across unstimulated single cells2

can be associatively linked with their response to stimulation. Here we developed an ap-3

proach that leverages this association across individual cells and nuclei to systematically4

identify potential regulators of biological processes, followed by targeted validation. Specifi-5

cally, we applied this approach to identify regulators of nucleocytoplasmic protein transport6

in macrophages stimulated with lipopolysaccharide (LPS). To this end, we quantified the7

proteomes of 3,412 individual nuclei, sampling the dynamic response to LPS treatment, and8

linking functional variability to proteomic variability. Minutes after the stimulation, the pro-9

tein transport in individual nuclei correlated strongly with the abundance of known protein10

transport regulators, thus revealing the impact of natural protein variability on functional11

cellular response. We found that simple biophysical constraints, such as the quantity of nu-12

clear pores, partially explain the variability in LPS-induced nucleocytoplasmic transport.13

Among the many proteins newly identified to be associated with the response, we selected 1614

for targeted validation by knockdown. The knockdown phenotypes confirmed the inferences15

derived from natural protein and functional variation of single nuclei, thus demonstrating16

the potential of (sub-)single-cell proteomics to infer functional regulation. We expect this17

approach to generalize to broad applications and enhance the functional interpretability of18

single-cell omics data.19
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Introduction20

Single-cell omics methods have rapidly scaled up1,2 and enabled the investigation of cellular het-21

erogeneity and the creation of cell atlases3. However, the functional interpretation of such omics22

data has lagged behind4–7. To investigate the link between proteomic and functional variability23

across single-cells, we sought to develop an approach that associates the pre-existing differences24

in proteome configurations to their correspondingly variable cellular responses; such an approach25

may enable the inference of novel regulatory associations8. In particular, we aimed to investi-26

gate how pre-existing proteomic variability influences, and therefore explains the variability of,27

LPS-induced transport of proteins to and from the nucleus.28

To quantify this variation between individual cells and individual nuclei, we built upon the con-29

ceptual and technological advances in single-cell mass spectrometry proteomics9–21. Specifically,30

we used the framework of multiplexed data-independent acquisition (plexDIA) to implement the31

isotopologous carrier suggestion22,23, which generalizes the concept of isobaric carrier24,25 to plex-32

DIA. Isotopologous carriers have already shown promise in some applications18,26,27, and here we33

used them to enable the first proteomic analysis of individual organelles isolated from human cells.34

These methodological advances enabled global exploration of protein transport within individual35

cells, which for decades has been studied by imaging fluorescent proteins28–32. Our approach36

allows for more comprehensive initial discovery, which can expand previous observations that37

pro-inflammatory stimulation leads to heterogeneous nuclear import of transcription factors33,34.38

These discoveries can later be examined with much higher temporal resolution using fluorescent39

imaging35,36.40

Here, we demonstrate a generalizable approach that enables the inference of functional regula-41

tors from (sub-)single-cell proteomics data. Specifically, we identified proteins regulating subcel-42

lular transport, including the differential contributions of the subunits of the nuclear pore complex.43

Our inferences were derived from natural protein variation across single cells and nuclei. Subse-44

quent validation of these results by targeted knockdown experiments provide direct evidence for45

the functional relevance of our inferential approach.46
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Results47

Protein transport in bulk macrophage populations48

To first study protein transport between the nucleus and the rest of the cell in bulk populations,49

six biological replicates were generated using a model system of macrophage-like cells derived50

from THP-1 monocytes treated with phorbol 12-myristate 13-acetate (PMA). Their nuclei were51

extracted with mild detergent using methods adapted from an established workflow37. This physi-52

cal isolation produced sufficient nuclear enrichment as demonstrated by a 5 - 25-fold depletion of53

proteins from non-nuclear cellular compartments from the nuclei, Extended Data Fig. 1a.54

Having validated the enrichment of the isolated nuclear fractions, we next sought to quantify55

the LPS-induced dynamics of protein transport. To this end, we quantified differential protein56

abundances for nuclei and whole-cells using MS-EmpiRe38. The abundance changes in the whole57

cells reflect protein synthesis, degradation, and secretion; changes at the nuclear level also include58

nucleocytoplasmic transport. As expected, changes mediated by protein synthesis and degradation59

are slow compared to the kinetics of nucleocytoplasmic transport. Indeed, 60 minutes after LPS-60

stimulation, the changes are dominated by transport with 15.7% of nuclear proteome exhibiting61

differential abundance compared to only 2.3% of the whole-cell proteome, Fig. 1a. This difference62

is even more pronounced for earlier time points where changes affect less than 0.1% of the whole-63

cell proteome 30 minutes after LPS stimulation, but 9.3% of the nuclear proteome.64

Given that hundreds of proteins without innate immunity associations significantly changed65

their nuclear abundance in response to LPS, we aimed to evaluate the temporal continuity of each66

protein to further assess the confidence in these findings. As a quantifiable continuity metric,67

we calculated a ranked version of von Neumann’s ratio (RVN)39 for each protein as shown in68

Extended Data Fig. 2a. Indeed, proteins found to be differentially abundant at 5% FDR for nuclei69

and whole-cells were mostly monotonic and generally continuous, beyond the monotonicity of a70

simulated null model where the same number of proteins were assigned random fold-changes and71

RVN ratios were calculated, Extended Data Fig. 2b,c. Therefore, the large proportion (∼16%) of72

nuclear proteins changing significantly in response to LPS exhibit mostly continuous dynamics,73

which supports the validity of the findings.74
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Figure 1 | Protein dynamics in whole cells and nuclei reveal coordinated spatiotemporal control of biological
processes in bulk populations of macrophage-like cells. a Percent of differentially abundant proteins (5% FDR) in
nuclear (grey) and whole-cell (black) proteomes after 10, 30, or 60 minute LPS treatments. b Differentially abundant
proteins in the nucleus were analyzed to investigate the relationship between protein mass and transport kinetics.
Transport dynamics for each protein were interpolated across the four time points, and ordered with respect to protein
mass. The heatmap is colored according to each protein’s absolute-valued magnitude of protein transport. Using
a moving median approach to average the inherent biological variability, the data suggest smaller proteins achieve
half of their total transport at earlier time points than larger proteins. The dashed black line marks a commonly
recognized theoretical limit of passive diffusion (40 kDa). c Time-series data over the course of the LPS-treatment for
differentially abundant proteins in the nucleus; pro-inflammatory transcription factors are labeled and highlighted in
red, and other proteins with >4-fold change are highlighted in blue. d Protein set enrichment analysis of nuclei and
whole-cell bulk samples for NT, 10 minute, 30 minute, and 60 minute LPS treated samples. Brackets correspond to the
number of proteins included in computing the enrichment of Gene Ontology terms. e Gene Ontology terms associated
with mediating gene-expression, which significantly change in nuclear abundance in response to LPS, are plotted. The
95% confidence intervals are derived from the change of all proteins which correspond to the respective Gene Ontology
term. f Proteins were grouped thematically and plotted to show their change in nuclear abundance; all proteins were
differentially abundant at 5% FDR in at least one time point. g Nucleoporins which were differentially abundant in
the nucleus in at least one time point are plotted to display their change in nuclear and whole-cell abundance; TPR is
highlighted in red.
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Mass dependence of nucleocytoplasmic transport75

The kinetics of nucleocytoplasmic transport is mass-dependent, and we sought to investigate this76

dependence in our data. There are two mechanisms by which transport occurs: passive diffusion77

and active transport40,41. Molecules with masses less than 40 kDa have been reported to passively78

diffuse through nuclear pores with kinetics that are mass-dependent42. Kinetics of active transport79

are also dependent on the size of the cargo, but to a lesser degree, as the energy barrier is reduced80

through interactions with chaperones40,43. We investigated this relationship in our data and found81

that protein transport was indeed negatively correlated with protein mass, as shown in Extended82

Data Fig. 3. To increase the time resolution of this analysis, we interpolated protein transport83

across the 4 time points and found that smaller proteins achieved half their total transport at an84

earlier time than larger proteins, as shown as a heatmap and scatter plot in Fig. 1b. While this anal-85

ysis cannot conclude whether these trends reflect passive diffusion or simply mass-dependence in86

active transport, the results are consistent with more recent findings of passive diffusion occur-87

ring without a precise size threshold44. Irrespective of the mechanism, these data corroborate the88

mass-dependence of protein transport kinetics globally in the natural response of macrophages to89

LPS.90

Spatiotemporal control of inflammatory response in bulk cell populations91

While pro-inflammatory transcription factors are known to be imported to the nucleus in response92

to LPS, we identify hundreds of additional proteins significantly changing in nuclear abundance,93

many of which have no prior association with LPS-response. As expected, transcription factors94

NF-κB1, REL, RELA, and FOS increase in nuclear abundance by approximately 4-fold within95

10-60 minutes of LPS-treatment29,32,33,45, as shown in Fig. 1c. Interestingly, hundreds of additional96

proteins experience monotonic or generally continuous changes in nuclear abundance; one of these97

proteins, PAXX––a protein required for Non-Homologous End-Joining (NHEJ) DNA repair46,47,98

reached a 40-fold increase within 60 minutes of LPS-stimulation. This protein acts as a scaffold99

for the accumulation of XRCC5 and XRCC6 to facilitate NHEJ DNA repair48. Likewise, XRCC5100

and XRCC6 also increased significantly in the nucleus by 60 minutes, Extended Data Fig. 4.101

5

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 18, 2024. ; https://doi.org/10.1101/2024.06.17.599449doi: bioRxiv preprint 

https://doi.org/10.1101/2024.06.17.599449
http://creativecommons.org/licenses/by-nc-nd/4.0/


To characterize the effects of protein synthesis, degradation, and secretion, we computed pro-102

tein set enrichment on whole-cell proteomes; similar analysis of nuclear proteomes would ad-103

ditionally reflect nucleocytoplasmic transport, Fig. 1d. LPS-stimulation induced whole-cell pro-104

teome enrichment of Gene Ontology (GO) terms associated with gene-expression, such as “trans-105

lation,” “spliceosomal complex,” and “ribosome biogenesis.” Interestingly, changes to the nuclear106

proteome revealed spatiotemporal changes consistent with this whole-cell enrichment; specifically107

GO terms whose sites of action are in the nucleus, such as “general transcription initiation fac-108

tor activity” and “ribosome biogenesis” increased in nuclear abundance, while GO terms whose109

sites of action are outside of the nucleus, such as “cytosolic ribosome” decreased in nuclear abun-110

dance. These changes which reflect coordinated spatiotemporal rearragment of proteins involved111

in mediating gene-expression are shown for five GO terms in Fig. 1e. Together, the whole-cell and112

nuclear proteomic data provide complementary evidence which suggests macrophages increase113

their capacity to mediate gene-expression in response to LPS, as observed through increases in the114

absolute abundances of and the spatiotemporal rearrangement of proteins involved in this process.115

To more closely investigate the concordance of changes in nuclear biological processes, dif-116

ferentially abundant proteins were grouped thematically by function and plotted in Fig. 1f. We117

found concerted dynamics for proteasomal subunits and proteins associated with stress granule as-118

sembly, which decreased in nuclear abundance in response to LPS. Proteins associated with DNA119

repair, RNA processing, and nucleoporins were generally found to increase in nuclear abundance120

following LPS stimulation. Intriguingly, of all nucleoporins which changed significantly in nuclear121

abundance, only TPR––a negative regulator of NPC assembly49––decreased, Fig. 1g. Whole-cell122

abundances of the same nucleoporins were generally found to increase, including TPR. Taken123

together, these findings are consistent with LPS-induced upregulation of NPC assembly.124

Benchmarking protein quantification of single nuclei125

Using natural variation across single-cells to identify regulators of protein transport requires accu-126

rate quantification of many proteins in single nuclei. To accomplish this, we used highly parallel127

sample preparation by nPOP19,50 and the plexDIA framework combined with an isotopologous128

carrier. This methodology is analogous to isobaric SCoPE-MS15,24,51, thus we term it SCoPE-129
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DIA (Single Cell ProtEomics by Data-Independent Acquisition). As we previously suggested and130

demonstrated with plexDIA, this framework uses the chromatographic coelution of peptides from131

different samples to increase data-completeness22,23. Thus, protein identification across all samples132

can be enhanced by including a highly abundant sample, e.g., an isotopologous carrier, in parallel133

to single-cells or single-organelles. This benefit was evident with the introduction of plexDIA22
134

and has since been reproduced for single-cell analysis18. However, complex isotopologous carriers135

might increase interferences and thus decrease quantitative accuracy. To evaluate these trade-offs136

and find an optimal carrier level for acquiring single-nucleus data, we created and acquired data137

from a mixed-species spike-in of H. sapiens nuclei and S. cerevisiae run with 0x, 1x, 5x, 10x, 25x,138

or 50x carrier amounts, as shown in Extended Data Fig. 5a. We found that intersected protein-level139

quantitation was comparable across all carrier-levels, Extended Data Fig. 5b. Thus, the potential140

for interference by larger carriers has little effect on quantitative accuracy in our experiments,141

which is likely due to the lower proteomic complexity of nuclei as compared to whole cells.142

To improve quantitative accuracy, the carrier channel was used as a reference to estimate quan-143

titative compression and remove poorly quantified precursors similar to previous filters15. We144

applied this filter at various levels to converge upon an optimal balance between coverage and ac-145

curacy, Extended Data Fig. 5c-e. Using this strategy, we compared the coverage and quantitative146

accuracy and for all proteins identified at various carrier levels and found reduced quantitative ac-147

curacy at higher carrier levels, Extended Data Fig. 5f. This likely reflects the increasing proportion148

of lowly abundant proteins, which naturally suffer from noisier quantitation. Indeed, the quantita-149

tive accuracy for the subset of proteins quantified across all carrier levels is high even for the 50x150

carrier, Extended Data Fig. 5b. To summarize, large nuclear carriers were found to not worsen151

quantitative accuracy, but rather enable quantification of additional lowly abundant proteins that152

are naturally less well-quantified. Therefore, we chose to acquire single-nucleus data with 25x and153

50x nuclear proteome carriers.154

Variability in LPS-induced nucleocytoplasmic transport across single nuclei155

Next, we sought to infer potential regulators of nucleocytoplasmic transport from the natural vari-156

ability of macrophage proteomes prior to the LPS stimulation and its regulatory impact on the LPS157
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response. Using SCoPE-DIA, we acquired a dataset consisting of 3,412 nuclei across four biolog-158

ical replicates, with a median of 1,366 proteins quantified per nucleus, Fig. 2a. After filtering to159

remove nuclei and precursors with poor quantitation (Extended Data Fig. 6a-b), and nuclei with160

insufficient nuclear enrichment (Extended Data Fig. 6c-d), we retained 2,997 nuclei with a median161

of 1,287 proteins per nucleus to be used in downstream analyses, Fig. 2a.162

Projecting the single-nuclei proteomes onto their principal components produced a partial sep-163

aration between NT and LPS-treated populations, Fig. 2b. Aside from measurement error, three164

compounding sources of variability may result in this observed partial separation: pre-existing165

variability of protein abundances at the whole-cell level, pre-existing variability in subcellular pro-166

tein localization, and variability in nucleocytoplasmic transport in response to LPS. We sought to167

overcome the first two sources of variability and investigate the latter, heterogeneity of nucleocyto-168

plasmic transport. This presents a challenge as the pre-existing protein variability is large relative169

to the magnitude of protein transport induced by a short LPS exposure.170

To explore the variability of LPS-induced nucleocytoplasmic transport, we derived a metric171

aiming to quantify the amount of protein transport experienced by each nucleus; however, given172

that we did not measure proteomes of the same nuclei before and after stimulation, our estimate173

cannot directly quantify protein transport. As a substitute, we derived a ‘transport score’ metric,174

which quantifies the deviation of single LPS-treated nuclear proteomes from the proteome distri-175

bution of untreated single nuclei. To mitigate noise, we used our bulk data to differentially apply176

weights based on transporting proteins, as illustrated in Extended Data Fig. 7. As expected, the177

resulting distributions of transport scores for single nuclei indicate increased nucleocytoplasmic178

transport for longer time-periods of LPS treatment, Fig. 2c.179

To link proteomic variability to functional variability in protein transport, we computed corre-180

lations of relative protein abundances to transport scores for all LPS-treated single nuclei, Fig. 2d;181

two proteins, NUP205 (ρ = 0.28) and VIM (ρ = −0.63), which are among the most (anti-182

)correlated to protein transport, are highlighted. Protein-set-enrichment results on this ordered183

vector indicate associations to cell division, cell adhesion, and other processes shown in Extended184

Data Fig. 8. To explore whether these associations are driven by pre-existing proteomic variabil-185

ity or LPS-induced changes, we compared the protein abundance distributions before and after186
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Figure 2 | Associating single-nucleus proteomic variability to heterogeneous LPS-induced nucleocytoplasmic
protein transport. a LC-MS/MS single-nucleus proteomics data was acquired with SCoPE-DIA for 3412 nuclei,
quantifying a median of 1366 proteins per nucleus. Single nuclei which were insufficiently prepared, acquired, or
depleted of non-nuclear proteins were removed, yielding 2997 nuclei with a median of 1287 proteins per nucleus
post-filtering; these nuclei were used for downstream analyses. b Weighted PCA produced partial separation between
LPS-treated (10, 30, and 60 minute) nuclei and not-treated (NT) nuclei. c Distribution of transport scores from single
nuclei. Macrophages treated with LPS for longer durations yielded nuclei which had undergone more protein transport.
d Rank sorted correlations between the transport score of each nucleus and its proteome. The underlying data used to
compute these associations is shown for two proteins, NUP205 and VIM. e Distributions of relative protein abundances
of NUP205 and VIM in the NT and LPS-treated populations of single nuclei. The overlap quantifies the proportion of
commonality between the untreated and the treated populations. High values suggest pre-existing variability is much
larger than LPS-induced changes. f Distribution of overlaps for all proteins between NT and LPS-treated populations
of single nuclei.
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LPS treatment, Fig. 2e. The results indicate that LPS-induced changes are small relative to the187

natural variation across untreated nuclei, Fig. 2e,f. Therefore, our associations are dominated by188

the pre-exisiting variation across proteomic configurations; this initial variability likely influences189

the amount LPS-induced protein transport each cell undergoes. Thus, associations between single-190

nucleus protein abundances and transport scores may be used to identify proteins whose abundance191

affected nucleocytoplasmic protein transport.192

More nuclear pore complexes, more transport193

Nearly all nucleoporins were positively correlated to nucleocytoplasmic protein transport, Fig. 3a,194

suggesting nuclei with more nuclear pore complexes (NPCs) experience more transport. The only195

exception was TPR, which has been reported to negatively regulate NPC assembly, as validated196

through knockdowns of TPR yielding cells with more assembled NPCs49, as well as in patient197

fibroblasts with reduced TPR abundances52. Interestingly, our data support these previous results,198

as TPR is the only nucleoporin whose abundance was negatively associated with protein trans-199

port. To more clearly investigate this relationship, we collapsed all nucleoporin abundances to the200

complex-level, and correlated these NPC abundances to transport scores in LPS-treated nuclei (n201

= 2,237) and found a relatively strong and highly significant association (ρ = 0.48, P < 10−15), as202

shown in Fig. 3b. Indeed, this suggests a highly significant association between NPC abundance203

and nucleocytoplasmic transport.204

Having uncovered this association between transport and NPC abundance in single nuclei, we205

sought to additionally investigate whether the mass-dependence of nucleocytoplasmic transport206

also changes as the number of NPCs varies across single nuclei; specifically, the nuclear envelope207

should become more permeable to passive diffusion at higher pore densities. To test this hypoth-208

esis, we first quantified the mass dependence of protein transport for each nucleus by regressing209

the molecular masses of proteins on their absolute deviations from the NT-population of single210

nuclei––a substitute for measuring protein-specific transport. The slopes of these regressions were211

plotted against corresponding NPC abundances in single nuclei, Fig. 3c. The results revealed a212

modest association across all 2,237 LPS-treated nuclei (ρ = −0.17) with high statistical signifi-213

cance (P < 10−14). This association indicates that nucleocytoplasmic transport of smaller proteins214
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Figure 3 | Nucleoporin abundances and their associations to LPS-induced nucleocytoplasmic transport. a
Nucleoporins are variably associated with LPS-induced nucleocytoplasmic protein transport. b Single nuclei with
more nuclear pore complexes experience more LPS-induced nucleocytoplasmic protein transport (P< 10−15, ρ =
0.48). c For each single LPS-treated nucleus, a slope of the absolute value of differentially abundant proteins vs protein
mass was computed to quantify mass-dependence of transport for each single nucleus; single nuclei which had the least
and greatest abundance of nuclear pore complexes are shown at the top of the panel. The resulting slopes were plotted
against their respective nuclear pore complex abundances, as shown at the bottom of the panel. The data suggest
protein transport becomes increasingly mass-dependent, favoring transport of smaller proteins, when nuclear pore
complex abundances are high (P< 10−14, ρ = −0.17). d Predicted human nuclear pore complex from Mosalaganti et
al., with nucleoporins colored by their correlations to transport score. e Distribution of each nucleoporin’s correlation
to transport score grouped by their localization inside the NPC. f Distribution of each nucleoporin’s correlation to
transport score grouped by whether it is a peripheral or scaffold protein in the NPC (P = 0.037). g Nucleoporins’
correlations to transport are associated with their respective half lifes (half-life data from Mathieson et al.).
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increasingly outpaced transport of larger proteins, at least in part as a function of NPC abundance,215

Fig. 3c. Given that passive diffusion is highly mass-dependent, it may suggest that single nu-216

clei with more NPCs experience more passive diffusion, thus providing empirical support for this217

theoretical expectation.218

While the abundances of nearly all nucleoporin proteins correlate positively with transport219

scores, the magnitude of this correlation varies across nucleoporin proteins, as shown in Fig. 3a.220

To explore this variability, we investigated what might be associated with these differences. To221

visually inspect the structural dependence of the correlations, the predicted structure of the human222

nuclear pore complex from Mosalaganti et al.53 was colored according to each proteins’ correlation223

to the transport score, Fig. 3d. This was investigated more directly by grouping nucleoporins224

based on their localizations inside the nuclear pore complex, as shown in Fig. 3e, and according to225

whether the nucleoporins were peripheral or scaffold proteins of the NPC54, as shown in Fig. 3f.226

The abundances of scaffold proteins were significantly more associated with nucleocytoplasmic227

transport than peripheral proteins of the NPC (P = 0.037). This variation across nucleoporins is228

further supported by a significant correlation with protein half-lives derived from Mathieson et al.’s229

SILAC turnover data54 (ρ = 0.56, P = 0.0018), as shown in Fig. 3g, as scaffold nucleoporins have230

been reported to have longer half-lives than peripheral nucleoporins54,55. These results suggest the231

observed variability in each nucleoporins’ correlation to transport is significantly associated with232

the nucleoporin’s localization inside the NPC and their respective half-lives.233

Targeted perturbations validate the single-nucleus derived associations234

Having used single-nucleus proteomics data to infer novel regulators of LPS-induced nucleocyto-235

plasmic protein transport, we aimed to directly test these potential enhancers and suppressors of236

nucleocytoplasmic transport through targeted perturbations. The highest ranking hypotheses from237

the single-nucleus proteomics analysis include proteins directly involved in transport such as nu-238

cleoporins and ribosomal export proteins such as MDN156. However, many other proteins without239

functional annotations for protein transport or innate immunity are also highly (anti-)correlated240

to transport. Perhaps some of these proteins influence LPS-induced protein transport, and these241

functional associations present discovery opportunities. We sought to test these associations ex-242
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perimentally through directed perturbations using siRNA mediated knock downs.243

To test potential transport regulators, we chose to knock down 16 proteins spanning the con-244

tinuum shown in Fig. 4a and quantified the change in LPS-induced nucleocytoplasmic protein245

transport. The knockdowns were performed using siRNAs as shown in Fig. 4b, and the de-246

crease of the corresponding gene products was validated in whole-cell and nuclear bulk lysates, as247

shown in Supplementary Fig. 1 and Supplementary Fig. 2. To quantify how each knockdown af-248

fected LPS-induced nucleocytoplasmic protein transport, slopes were calculated from fold-changes249

(LPS/NT) between the original bulk data and each siRNA condition, using the negative control250

(non-targeting) siRNA as a reference for each biological replicate, as shown in Fig. 4b. Results for251

individual biological replicates are shown in Supplementary Fig. 3. With this strategy, we aimed252

to quantify the global change in nucleocytoplasmic transport as a result of each knockdown.253

Associating relative protein abundances to function in single cells may serve as a means of254

inferring regulatory potential. We sought to evaluate the predictive power of these associations255

by computing the significance of protein correlations to transport from the single-nuclei data and256

the significance of the change in transport from corresponding knockdowns, Fig. 4c. Indeed, as257

a result of the knockdowns, protein transport for 13/16 of the conditions was affected in the ex-258

pected direction. Specifically, knockdowns of potential transport suppressors increased transport259

in 7/7 cases; knockdowns of potential transport enhancers decreased transport in 6/9 cases. The260

protein correlations to transport scores from the single-nucleus data were highly predictive of the261

functional effects of the knockdowns (ρ = −0.77, P < 5 × 10−4). The slopes, which were used262

for determining the change in LPS-induced nucleocytoplasmic transport, were computed from the263

100 most differentially abundant proteins from the original bulk data. Various filtering levels were264

applied to examine the robustness of the findings, as shown in Extended Data Fig. 9, and all three265

levels showed similar trends.266

Knockdowns of IMMT, RPSA, HSD17B4, SND1, DHX15, and VIM were found to signifi-267

cantly increase transport, whereas knockdowns of RBM6 and MYBBP1A were found to signifi-268

cantly reduce transport. Therefore, 8/16 knockdowns significantly changed LPS-induced nucleo-269

cytoplasmic transport, 7/8 of which changed nucleocytoplasmic transport in the expected direction.270

The knockdown which most significantly affected transport was IMMT, a mitochondrial protein271
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Figure 4 | Genetic perturbations validate single-nucleus-derived protein associations. a Correlations of protein
abundances to transport score from single-nucleus data. 16 proteins were selected to be knocked-down and colored
with green or purple depending on whether it is associated with increased or decreased transport. b Workflow for
siRNA-mediated knockdowns in THP-1 monocytes, followed by differentiation to macrophages. A negative control
(non-targeting) siRNA was included in each biological replicate, and used to compute a change in transport as the
result of each siRNA knockdown (KD); change in transport was calculated as the difference in slopes between the
negative control siRNA and a gene-targeting siRNA. c Here we evaluate the predictive power of the single-nucleus
findings through experimental genetic perturbations in bulk data. The biological replicates from the single-nucleus
data were used to compute significance of correlations to transport scores, shown on the y-axis; the x-axis measures
the significance of how the knockdown affected nucleocytoplasmic protein transport. The single-nucleus associations
were highly predictive of the functional effects in genetic perturbations (P = 0.00046, ρ = −0.77). d Significance
of how individual gene knockdowns affect nucleocytoplasmic transport. Knockdowns of IMMT, RPSA, HSD17B4,
SND1, DHX15, and VIM were found to globally increase LPS-induced nucleocytoplasmic protein transport; knock-
downs of RBM6 and MYBBP1A were found to decrease transport.
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without prior association to innate immunity or nucleocytoplasmic protein transport. Whole-cell272

lysates of these knockdowns complementarily indicate a gradient of unpreparedness and primed-273

ness to respond to LPS and facilitate nucleocytoplasmic transport, as shown in Extended Data274

Fig. 10. These findings validate the potential of (sub-)single-cell proteomics to identify novel275

regulators of biological functions.276

Discussion277

Identifying functional regulators of complex biological processes is an ongoing challenge in pro-278

teomics data interpretation. Here we demonstrate an interpretation approach that exploits the natu-279

ral variability inherent in a population of single cells to empower inference of functional regulation.280

It is conceptually similar to the identification of functional regulators through perturbation-induced281

variability in bulk samples57 but instead utilizes the natural variability across individual cells. In282

our approach, we assumed that the initial proteomic states of single macrophages would explain283

the variability in LPS-induced nucleocytoplasmic protein transport. Operating under this principle,284

we quantified a metric (the transport score) from which we could evaluate the influence of resting285

proteomic variability on this response. We found that simple biophysical constraints, such as the286

quantity of nuclear pores, partially explain the variance in nucleocytoplasmic transport. Interest-287

ingly, the abundance of scaffold subunits is more strongly associated with transport rates than the288

abundance of peripheral subunits, which is consistent with modular and specialised structures of289

the nuclear pore complex58.290

Beyond the role of nuclear pores, our analysis identified hundreds of additional proteins, many291

of which without annotated associations to innate immunity or protein transport, yet whose abun-292

dances were strongly correlated to the magnitude of nucleocytoplasmic protein transport expe-293

rienced in single cells. We tested these protein-associations through genetic perturbations and294

found that the associations derived from single-nucleus data were, as a whole, highly predictive295

of their respective effects on LPS-induced nucleocytoplasmic transport. This work demonstrates296

an approach which uses (sub-)single cell proteomics to infer functional regulators of complex bio-297

logical processes, such as LPS-induced nucleocytoplasmic transport. We expect approaches such298

as this will generalize to broad applications and support the functional interpretation of single-cell299
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proteomics data.300

Methods301

Cell culture302

THP-1 monocytes (TIB-202, ATCC) were cultured in RPMI-1640 Medium (R8758, Sigma-Aldrich)303

supplemented with 10% fetal bovine serum (10439016, Gibco) and 1% penicillin-streptomycin304

(15140122, Gibco) and grown at 37◦C and 5% CO2. Cells were transferred to 100x15mm Nunclon305

dishes (150350, Thermo Scientific) at a density of approximately 200,000 cells/mL and volume of306

10 mL. Differentiation proceeded following an established protocol by Lund et al.59; THP-1 cells307

were incubated in the presence of 25 nM phorbol 12-myristate 13-acetate (PMA) for 48 hours, then308

cells were detached with accutase, mixed to prevent any batch-effects resulting from differentia-309

tion occurring in isolated plates, washed 2-times with PBS, centrifuging at 300g for 5 min to pellet310

for washes. The cells were then allowed to incubate in growth media without PMA for 24 hours,311

and in this time reattach to fresh 100x15mm Nunclon dishes. The resulting M0 macrophages were312

either left not-treated (NT), or treated with 1 µg/mL lipopolysaccharides from Escherichia coli313

O111:B4 (L4391, MilliporeSigma) for 10 minutes, 30 minutes, or 60 minutes.314

Protein knockdowns315

Proteins of interest were knocked down via reverse transfection of Silencer siRNAs (Ambion)316

and Silencer Select siRNAs (Ambion) into THP-1 monocytes using methodology adapted from317

manufacturer instructions for RNAi transfection. Silencer siRNAs were transfected in 12-well318

Nunclon plates and Silencer Select siRNAs were transfected in individual 60 mm dishes. For319

Silencer siRNAs, 10 pmol of siRNA was complexed with 3 µL of RNAiMAX. For Silencer Select320

siRNAs, 55 pmol of siRNA was complexed with 17 µL of RNAiMAX (Invitrogen) in 552 µL of321

serum-free RPMI (Sigma) in a 60 mm Nunclon dish (Thermo). siRNAs were complexed with the322

RNAiMAX lipid reagent for 5 minutes at room temperature. THP-1 monocytes were added in323

RPMI supplemented with 10% fetal bovine serum (FBS) and 1% penicillin-streptomycin to reach324

a final density of 300,000 cells per mL. Samples were cultured at 37oC and 5% CO2 for 24 hours325
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before adding PMA, at which point the same aforementioned cell culture process was followed.326

Nuclear isolation327

Macrophages were detached from Nunclon dishes with accutase on ice for approximately 20 min-328

utes. The cells were washed twice with 1x PBS to remove media, centrifuging at 300g for 5329

min each time. The cell concentration was measured with a hemocytometer. 15% of cells were330

retained as whole-cells for downstream analysis by resuspending the whole-cell pellet in LC-MS-331

grade water to a concentration of 3,000 cells/µL. These whole-cells were then stored at -80°C.332

The remaining 85% of cells were resuspended in 1 mL of ice-cold Lysis Buffer (0.1% NP-40, 250333

mM sucrose, 25 mM KCl, 5 mM MgCl2, 10 mM HEPES (pH = 7.4)) in a 2 mL Eppendorf tube,334

and left to lyse on ice for 20 min. At this point in the protocol, the cells are lysed but the nuclei are335

unlikely to be free from cellular debris and other organelles. To purify the nuclei, the 1 mL nuclei336

suspension was sheared through a 25G needle with even pressure, avoiding bubbling and foaming337

as much as possible. The shearing was repeated for a total of 5 times. Nuclei were visually in-338

spected under a microscope with Trypan Blue staining to ensure sufficient shearing of subcellular339

organelles from nuclei.340

After nuclei are sufficiently sheared, the suspension was centrifuged at 1000g for 8 min at 4 oC.341

The nuclear pellet was resuspended in 500 µL of 250 mM sucrose, 25 mM KCl, 5 mM MgCl2, 10342

mM HEPES (pH = 7.4). The mixture was underlayed with 500 µL of 350 mM sucrose, 25 mM KCl,343

5 mM MgCl2, 10 mM HEPES (pH = 7.4) to form a sucrose cushion, which was then centrifuged344

at 4,000g for 10 min (4 oC). The supernatant was removed, and the nuclear pellet was resuspended345

in 200 µL of LC-MS water, gently flicking to mix. 4 µL of nuclei suspension was mixed with 4 µL346

of Trypan Blue, then counted with a hemocytometer to find the final concentration. 150 µL of the347

bulk nuclei were stored at -80°C. The remaining 50 µL was diluted to a concentration of roughly348

400 nuclei/µL and used for single-nuclei sorting and sample preparation by nPOP19,50.349

17

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 18, 2024. ; https://doi.org/10.1101/2024.06.17.599449doi: bioRxiv preprint 

https://doi.org/10.1101/2024.06.17.599449
http://creativecommons.org/licenses/by-nc-nd/4.0/


Sample preparation for proteomic analysis350

Bulk samples351

Nuclei and whole-cell fractions, which were frozen at -80°C at a concentration of 3,000 cells/µL,352

were heated to 90°C for 10 minutes as part of the mPOP protocol60. Trypsin Gold (V5280,353

Promega) was added to a final concentration of 20 ng/µL, in addition to final concentrations of354

100 mM TEAB and 0.25 U/µL benzonase nuclease (E1014, Millipore Sigma). The cell lysates355

were digested at 37°C for 18 hours in a thermocycler. Samples were labeled with mTRAQ follow-356

ing manufacturer’s instructions. In short, the labels, which arrived suspended in isopropyl alcohol357

at a concentration of 0.05 U/µL (where 1 unit labels 100 µg), were added in a 1:2 proportion of358

label:peptide where the peptides were concentrated to 500 ng/µL in 100 mM TEAB. The labeling359

reaction was left at room temperature for 2 hours, and then quenched with 0.25% hydroxylamine360

for 1 hour.361

Creating a mixed species standard to benchmark SCoPE-DIA362

Digested protein lysate from THP-1 macrophage nuclei were mixed with digested S. cerevisiae363

protein lysate (V7461, Promega) to generate three samples. The proportions of Sample A (∆0):Sample364

B (∆4) was 4:1 for S. cerevisiae and 1:1 for H. sapiens. The unlabeled versions of these samples365

were mixed in a 1:1 ratio to generate a carrier sample which was then labeled with mTRAQ ∆8.366

Samples A and B were diluted such that the H. sapiens amount was 1 nucleus worth of protein367

(approximately 45 pg). The carrier sample was pooled with Samples A and B at 0x, 1x, 5x, 10x,368

25x, and 50x concentrations to generate the SCoPE-DIA benchmarks.369

Single nuclei370

Single nuclei were prepared for proteomic analysis by nPOP as previously described by Leduc et371

al.19,50. In short, single-nuclei were sorted by CellenOne into 8 nL droplets of 100% DMSO on372

a fluorocarbon-coated glass slide to lyse. The lysed nuclei were digested with Trypsin Gold at373

a concentration of 120 ng/µL and 5 mM HEPES (pH 8.5) and 200 mM TEAB buffer (pH 8.5).374

Peptides were then chemically labeled with mTRAQ ∆0 or ∆4. Single nuclei were pooled into375
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sets of ∆0 and ∆4, and dispensed into individual wells of a 384 well-plate. The pooled samples376

in the 384 well-plate were then dried in a speed-vacuum then stored at -80°C until use. Before377

sample loading for LC-MS/MS, a 25x or 50x nuclei carrier labeled with mTRAQ ∆8 was pooled378

into each set to create the final ∆0, ∆4, and ∆8 SCoPE-DIA set. Four single-nucleus biological379

replicates were prepared and acquired, for a total of 3412 single nuclei.380

Data acquisition381

All single nuclei and bulk samples were resuspended in 0.01% n-Dodecyl β-d-maltoside (DDM)61
382

with 0.1% formic acid. Sample pickup occurred out of a 384 well-plate for single-nucleus sam-383

ples, or from glass vials for bulk samples. Peptides were separated for LC-MS acquistion using a384

Neo Vanquish UHPLC and 25 cm × 75 µm IonOpticks Aurora Series UHPLC columns (AUR2-385

25075C18A) at a flow-rate of 200 nL/min. LC was run with the following settings: Direct Injec-386

tion, nano/cap flow, maximum pressure = 1500 bar, maximum pressure change = 1000 bar/min.387

Sample loading had the following settings: 1µL injection with 1.2 µL loading volume, ”Pressure388

Control” mode with maximum pressure set to 1450 bar, and fast loading enabled. Wash and equi-389

libration settings: ”Pressure Control” mode with maximum pressure set to 1450 bar, equilibration390

factor = 4.0, and fast equilibration was enabled.391

The LC gradient proceeded as follows: Ramp from 2.5%B to 6.5%B over 0.2 minutes, to392

11.5%B over 0.9 minutes, to 21.0%B over 3.1 minutes, to 31.5%B over 6.2 minutes, to 40%B over393

2.8 minutes, to 55%B over 1.7 minutes, to 95%B over 0.65 minutes and then hold at 95%B for 4394

minutes. This method allows for approximately 15 minutes of active chromatography, at a through-395

put of approximately 45 runs/day (90 single nuclei/day with SCoPE-DIA or 135 bulk samples/day396

with plexDIA) after accounting for sample loading and column equilibration overheads.397

All data were acquired on a Bruker timsTOF SCP using captive spray, dia-PASEF scan mode62,63,398

and positive polarity. The duty cycle consisted of 8 total PASEF frames, 26 Th MS2 windows with399

1 Th overlaps. To improve temporal sampling of the MS1-elution profiles which are used for quan-400

tification, an MS1 scan was taken every 2 PASEF frames, for a total of 4 MS1 scans per duty cycle.401

MS2 scan range: 300 m/z-1000 m/z, MS1 scan range: 100 m/z-1700 m/z, 1/K0 start: 0.64, 1/K0402

end: 1.20, ramp and accumulation times: 100 ms. The estimated duty cycle time is 1.28 seconds.403
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Collision energy settings were 20 eV at 1/K0 = 0.60 and 59 eV at 1/K0 = 1.60. Collision RF was404

set to 2000 Vpp.405

Raw data searching with DIA-NN406

Empirical spectral libraries of mTRAQ-labeled nuclei and whole-cells were generated from dia-407

PASEF runs on the timsTOF SCP, searching with a DIA-NN in-silico-predicited Swiss-Prot H.408

sapiens FASTA (canonical & isoform). Similarly, a combined H. sapiens and S. cerevisiae library409

was generated for searching SCoPE-DIA benchmarks.410

DIA-NN (version 1.8.1) was used to search raw data as previously implemented22,64. The411

following search settings were used: {–fixed-mod mTRAQ 140.0949630177, nK}, {–channels412

mTRAQ, 0, nK, 0:0; mTRAQ , 4, nK, 4.0070994:4.0070994; mTRAQ, 8, nK, 8.0141988132:8.0141988132},413

{–original-mods}, {–peak-translation}, {–report-lib-info}, {–qvalue 0.01}, {–mass-acc-ms1 5.0},414

{–mass-acc 15.0}, {–mass-acc-quant 5.0}, {–reanalyse}, {–rt-profiling}, and {–peak-height}.415

Computational data analysis416

Nuclear enrichment417

To assess nuclear enrichment, the first two bulk biological replicates were acquired in a plexDIA418

set of whole-cell and nuclear fractions. The fractions were subset for histones, which should only419

be present in the nucleus, and both fractions were normalized by a scalar such that histone pro-420

teins between whole-cells and nuclear fractions were in a 1:1 ratio. Ratios of MaxLFQ protein421

abundances for protein markers from The Human Protein Atlas for endoplasmic reticulum (ER),422

nuclear compartments, mitochondria, plasma membrane, cytosol, and Golgi were calculated be-423

tween nuclear and whole-cell fractions to assess nuclear protein enrichment65–67.424

Differential protein abundance analysis425

Precursor quantities acquired by plexDIA and analyzed by DIA-NN were corrected for isotopic en-426

velope carryover, as previously performed22. These precursor quantities were filtered for Lib.PG.Q.Value427

< 0.01 and Q.Value < 0.01 for bulk data from all six biological replicates and their corresponding428
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nested technical replicates. The bulk data used to generate weights for single-nuclei analyses were429

taken from cell-batches that corresponded to those single nuclei, in this case, biological replicates430

1, 2, 3, and 6; the bulk data used for single-nucleus weighting were further filtered for Translated431

Q-value and Channel Q-value < 0.05.432

Differential protein abundance was calculated through the MS-Empire workflow38 for each433

biological replicate. Precursors used for analysis were required to be quantified in at least two434

replicates per condition. Data normalization was performed using operations from the MS-Empire435

workflow, as described by Ammar et al.38. Differential abundance analysis collapsed precursors to436

gene-level annotations; this produced p-values calculated after outlier correction for each protein437

for each biological replicate; Stouffer’s method was applied to collapse multiple p-values from438

several biological replicates to a single combined p-value. Briefly, this involved converting p-439

values for each protein from each biological replicate to z-scores, multiplying by the sign of the440

fold-change, summing the signed z-scores, then dividing by the square root of the number of441

observations for that protein, and finally converting that z-score back to a single p-value for each442

protein. The resulting p-values were corrected for multiple hypothesis testing using the Benjamini-443

Hochberg (BH) correction68.444

Protein set enrichment analysis445

Protein set enrichment analysis was performed using the g:GOSt R package69,70. An ordered vector446

of gene names was used as the input. Results were filtered at 1% FDR, and the relative abundance447

for the Gene Ontology terms was computed across all samples from the intersect of protein abun-448

dances to represent the relative abundance of a given Gene Ontology term. Calculating the relative449

abundance of a Gene Ontology term from the subset of intersected proteins allowed for fairer com-450

parisons of enrichment between samples. Specifically regarding the analysis of whole-cell bulk451

knockdowns shown in Extended Data Fig. 10, in some cases this was performed on data in which452

NT and 60 minute LPS-treated cell-lysates were combined. These samples were experimentally453

combined for ease of labor and due to the minimal impact of 60 minute LPS-treatment on the454

whole-cell proteome.455
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Evaluating relationship of protein mass and transport456

Protein masses were downloaded from Uniprot71, and matched to proteins which we found sig-457

nificantly increased or decreased in response to LPS (Q-value < 0.05) in nuclear fractions. The458

absolute value of the log2 fold-change was plotted with the mass of the protein to statistically eval-459

uate the relationship between protein mass and the amount of transport that occurred as a result460

of LPS treatment. Because the masses are purely based on gene-encoded sequences, this analysis461

does not account for changes in mass as the result of proteolytic cleavage or the transport of protein462

complexes.463

Additionally, the dynamics of protein transport were interpolated from the four data points (NT,464

10 min, 30 min, and 60 min LPS) using a 3rd degree polynomial for each of the proteins that was465

found to significantly change in at least one of the conditions relative to NT. A total of 300 time466

points were predicted from the fit, ranging from 0 to 60 minutes. The proteins were arranged from467

smallest to largest and a moving median of the absolute value of the log2 fold-change from NT was468

calculated for each time point from that protein’s adjacent 40 smaller and 40 larger proteins. In this469

way, biological differences between proteins could be averaged to generally assess the influence470

of protein mass on transport kinetics. For each protein’s averaged kinetics, the time when half of471

the total absolute value log2 fold-change had occurred was marked. This was plotted against the472

protein mass and a Spearman correlation was calculated.473

Benchmarking SCoPE-DIA quantification474

To benchmark how different levels of carrier affect protein-level quantitation of SCoPE-DIA as475

shown in Extended Data Fig. 5f, precursors were intersected across all carrier levels, and thus476

proteins as well; precursor quantities were collapsed to protein-level quantities using MaxLFQ,477

and then ratio values between ∆0 and ∆4 were computed, normalizing H. sapiens to a be median-478

centered at a 1:1 ratio to account for systematic differences in loading amounts, if any exist. To479

compare quantitation at different carrier levels for all proteins, as shown in Extended Data Fig. 5f,480

the same process was performed without intersecting.481

In regards to compression filtering, acquiring single cell (or nucleus) data with a constant,482
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known amount of carrier is useful to identify precursors which have systematically interfered483

quantification. Precursors which have systematically compressed quantification across all samples484

relative to the expected carrier amount, are unlikely to be well-quantified and can be removed. To485

identify which precursors to remove, a ratio for each precursor from the single-nucleus channels to486

its respective carrier channel was calculated. Precursors with median ratios > 6-fold greater than487

the theoretical ratio (e.g. 1:50 is expected for a 50x carrier) were considered to be systematically488

poorly quantified and were excluded from downstream analyses.489

Single-nucleus quality control490

To identify which single nuclei were successfully prepared and acquired, precursors were filtered491

for Channel and Translated Q-values < 0.1 and the number of remaining high quality precursors492

was counted. Single nuclei with ≥ 50 high quality precursors were retained for downstream anal-493

ysis as this threshold was sufficiently separable from negative controls. Precursors were required494

to be quantified in ≥ 1% of single nuclei, and have < 6x ratio compression to be retained for495

downstream analysis.496

Single nuclei were further filtered to ensure sufficient depletion of non-nuclear proteins. To497

quantify the nuclear purity of each single-nucleus, the nuclear proteomes were scaled to a reference498

bulk nuclear fraction, and compared to a ratio of whole-cell to nuclear fraction. A 3rd degree499

polynomial was used to fit a curve for each single-nucleus, and an absolute value of the AUC was500

computed. This value was used to identify single-nuclei which were insufficiently pure. Only501

single nuclei with AUCs < 5 were used in downstream analyses.502

Single-nucleus protein quantification, imputation, and batch correction503

Precursor abundances from single nuclei were normalized to their respective carrier channel, which504

serves as a reference similar to the isobaric SCoPE-MS workflow15,24. For each precursor across505

all carrier samples, the mean abundance was calculated and used to scale the data of the single506

nuclei, to be compatible for MaxLFQ protein quantification65. The resulting protein-level data of507

each nucleus was normalized by its respective median protein abundance to account for differences508

in absolute abundances, then each protein was normalized by the mean abundance across single509
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nuclei. The log2-transformed data was imputed using a weighted kNN approach (k=5), where510

the weights were proportional to the similarity to its nearest neighbors. Finally, the data was511

batch-corrected using ComBat72,73 to account for mTRAQ label-biases, LC-batches, and biological512

replicates.513

Weighted Principal Component Analysis (PCA)514

The variance of single-nucleus protein data was weighted based on protein correlations, bulk dif-515

ferential abundance, and bulk continuity of spatiotemporal trends. Effectively these weights assign516

higher variance based on: 1) how correlated a protein’s abundance is to other proteins abundances,517

2) how differentially abundant the protein was in the bulk data, and 3) how continuous the trend518

was in its spatiotemporal response to LPS.519

Specifically, the bulk differential abundance data computed from MS-Empire38 analysis had520

p-values which where converted to signed Z-scores. Using Stouffer’s method they were combined521

for all the bulk biological replicates that correspond to the single-nucleus replicates, in this case,522

biological replicates 1, 2, 3, and 6. The resulting Z-score for each protein was squared, then used523

to weight the variance of that protein in the single-nucleus data. Additionally, the inverse of the524

ranked version of the von-Neumman Ratio (RVN) calculated from bulk data was used to weight525

the variance of each respective protein in the single-nucleus data.526

Computing single-nucleus transport scores527

Directly measuring protein transport in a cell using LC-MS/MS was not possible with this experi-528

mental design as we did not measure the same nucleus before and after LPS stimulation. However,529

we derived a ’transport score’ metric to serve as a substitute which serves to quantify the devi-530

ation of single LPS-treated nuclei from the population of single NT nuclei. The transport score531

accounts for pre-existing variability in the not-treated (NT) population of single nuclei for each532

protein by converting protein abundances for each LPS-treated nucleus to a Z-score in reference533

to the NT-population. For each nucleus, the resulting vector of Z-scores is weighted based on534

the signed-Z-scores of the differential protein abundances in the bulk data. Therefore, a protein’s535

contribution to the transport score is weighted by its significance in the bulk data, where more536
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differential proteins carry greater weights. The mean component of the resulting vector of each537

nucleus is taken as that nucleus’ transport score.538

Computing protein overlap coefficients between populations of single nuclei539

The overlap between the distributions of relative protein abundances between populations of single540

nuclei was computed to quantify the commonality of protein abundances pre-stimulation and post-541

LPS stimulation. This overlap coefficient was computed by the overlap function of bayestestR74.542

It is computed by modeling the distribution of relative protein abundances as densities for two543

populations and then computing the proportion that is shared. For example, a protein that has544

high-overlap between abundances in NT and LPS-treated populations, is one that is minimally545

transported relative to its natural variability.546

Quantifying nuclear pore complex abundances and dependence on mass547

To quantify nuclear pore complex abundances in each single-nucleus, relative abundances of nu-548

cleoporins were converted to Z-scores and combined for all nucleoporins using Stouffer’s method.549

Mass dependence as a function of NPC abundance was computed for each LPS-treated single-550

nucleus based on the slopes (protein Z-scores vs log10-transformed protein mass) of differentially551

abundant proteins in the single-nucleus data.552

Investigating the association between nucleoporin half-lives and their correlations to trans-553

port score554

Half-lives were derived from SILAC turnover data of primary monocytes, NK cells, neurons, hep-555

atocytes, and B-cells from Mathieson et al.54. Specifically, the half-lives of all replicates for each556

cell-type was collapsed to the mean, then the mean of all cell-types was collapsed to a final value,557

which was used as the half-life in our analysis.558
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Visualizing the nuclear pore complex559

The predicted structure of the human nuclear pore complex (PDB Entry: 7r5k)53 from Mosalaganti560

et al. was used visualize the NPC. The nucleoporins were colored by their respective correlations561

to transport score using ChimeraX (v1.6.1)75.562

Quantifying the effect of protein knockdowns on transport563

To quantify how each protein knockdown affected LPS-induced nucleocytoplasmic transport, each564

biological replicate included a matched negative (non-targeting) siRNA control to account for how565

much transport would have occurred without the knockdown. A slope was calculated from the 100566

most differentially abundant proteins in the original (no knockdown) bulk data to the data for each567

knockdown. The fold-changes for proteins used for computing these slopes were weighted by their568

associated Z-score significance of differential abundances from the original bulk data; this serves to569

weight each protein’s contribution to the slope-calculation based on its significance. The difference570

in slopes between the negative control (non-targeting) siRNA and the knockdown was computed.571

This difference in slope is interpreted as the extent to which nucleocytoplasmic transport changed572

as a result of the knockdown. Additionally, the associated standard error of each slope was used573

between the negative control and experimental knockdown to derive a Z-score for the significance574

of the difference in transport. Significance from additional biological replicates were combined575

using Stouffer’s method to arrive at a cumulative Z-score. To assess the significance of the effect576

on transport of individual knockdowns, this Z-score was converted to a p-value and adjusted for577

multiple testing hypotheses using a BH-correction.578

Calculating significance of correlation to transport score579

To derive a metric for the significance of protein correlations to the transport score, a rank-based580

normalization approach (Rankit) was used to transform the correlations into a standard normal581

distribution. The resulting Z-scores were combined using Stouffer’s method to arrive at a final582

Z-score for each protein, as shown on the y-axis of Fig. 4c. This approach was chosen as an583

alternative to a traditional Z-score operation given that the distribution of correlations to transport584
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scores were non-Gaussian and have a skewed tail.585

Availability586

All data are reported and deposited in accordance with the community guidelines13. Raw data,587

spectral libraries, FASTAs, and DIA-NN search outputs are available at MassIVE: MSV000094829.588

Code, processed data, supporting files, supplementary figures, and interactive supplementary anal-589

yses (e.g. volcano plots and time-series data) are available at scp.slavovlab.net/Derks et al 2024.590
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Extended Data Figures785
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Extended Data Fig. 1 | Evaluating nuclear enrichment of bulk samples. Proteins markers from The Human
Protein Atlas were used to benchmark the enrichment of nuclear proteins, and the depletion of non-nuclear proteins in
nuclear lysate relative to whole-cell lysate.
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Extended Data Fig. 2 | Assessing the continuity of time-series data for LPS-induced differentially abundant
proteins. a Calculation for the ranked version of von Neumann’s ratio (RVN). b Distribution of RVN ratios for
differentially abundant proteins (5% FDR) in nuclei (“Sig. proteins”) compared to a simulated null model. c Same as
b, but for whole-cells.
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Extended Data Fig. 3 | Fold-change of LPS-induced protein transport is mass-dependent. Absolute value fold-
changes between LPS-treated and NT nuclear proteomes, and molecular masses are plotted for differentially abundant
proteins (5% FDR). Smaller proteins tend to have greater fold-changes than larger proteins. Spearman correlations
and associated statistical significance are noted.
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Extended Data Fig. 4 | Change in the nuclear abundance of proteins associated with DNA repair complex in
response to 1µg/mL LPS. Time series trends of DNA repair complex proteins computed from up to 6 bulk biological
replicates. Proteins shown in red are differentially abundant at 5% FDR, otherwise they are shown in black.
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Extended Data Fig. 5 | Benchmarking SCoPE-DIA for single nucleus proteomics. a We sought to test whether
acquiring single nucleus data in parallel with a more abundant carrier sample may improve protein coverage with
minimal effect to quantitative accuracy. To test this, a mixed-species spike-in of 4:1 S. cerevisiae and 1:1 H. sapiens
was created at 0x, 1x, 5x, 10x, 25x, and 50x carrier amounts. b Quantitative accuracy of proteins quantified across
all carrier-levels (n=658) remains accurate despite the potential for increased interference. Dashed lines correspond to
the theoretical expectation of the spike-in ratio. c Median ratios of precursor abundances to the carrier were computed
and plotted as a histogram. Precursors with systematically compressed ratios from the theoretical expectation of the
carrier level (e.g. 1:50) are likely poorly quantified, and were removed from downstream analysis. d Quantitative
accuracy for intersected proteins at 4 filtering thresholds with the 50x carrier. Filtering precursors based on observed
compression relative to the carrier improves quantitative accuracy. e Number of protein ratios quantified between ∆0
and ∆4 with 50x carrier after various filtering thresholds. f After filtering to remove poorly quantified precursors,
the 50x carrier still enables nearly 4-fold greater proteomic coverage. The protein-level quantitative accuracy for all
proteins is shown in the bottom panel. The data indicate that the overall quantitative accuracy decreases as the carrier
enables identification of otherwise unidentifiable proteins; naturally, these proteins are lowly abundant and thus poorly
quantified.
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Extended Data Fig. 6 | Single nucleus quality control. a Single nuclei and negative controls were filtered for
Translated and Channel Q-values < 0.1, and the number of precursors quantified was counted and plotted as a his-
togram. Successfully prepared and acquired nuclei, which were separable from negative controls, were retained for
downstream analysis (highlighted in green). b Single nuclei were acquired with either a 25x or 50x carrier, and the
median ratio of precursor intensities from single nuclei to normalized carrier was computed for each precursor. Only
precursors with <6-fold compression were retained for downstream analysis (highlighted in green). c Nuclear purity
was assessed for each single nucleus to a reference bulk nuclear fraction, shown in the y-axis, and a 3rd degree polyno-
mial was fit for expected protein enrichment in the x-axis. Each line denotes the 3rd degree polynomial fit for a given
single nucleus, and is colored by the computed area under the curve (AUC). Single nuclei with greater AUC reflect
nuclei which are generally less pure (more whole-cell like). Only nuclei with AUC < 5 were retained for down-stream
analysis. d Similar to the previous plot, this shows the distribution of AUCs for single nuclei. Only relatively pure
nuclei (AUC < 5) were retained for downstream analysis.
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Extended Data Fig. 7 | Computing the transport score of single nuclei. Single-nucleus protein transport cannot
be directly quantified in our analysis due to the lack of measurements before and after LPS stimulation for the same
nucleus. Here, we derive a metric, we term ‘transport score,’ that serves as an approximation. Deviations of protein
abundances from the NT-population of single-nuclei are calculated globally, for all proteins, for each LPS-treated
nucleus. The resulting vectors are weighted according to the differential protein abundances derived from the original
bulk data presented in Figure 1. The mean component of the resulting vector is the weighted deviation of a single-
nucleus from the NT-population of single-nuclei; we use this metric (transport score) to infer the magnitude of protein
transport.

40

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 18, 2024. ; https://doi.org/10.1101/2024.06.17.599449doi: bioRxiv preprint 

https://doi.org/10.1101/2024.06.17.599449
http://creativecommons.org/licenses/by-nc-nd/4.0/


U5 snRNP

pore complex assembly

rRNA metabolic process

cell division

spliceosomal complex

intracellular protein transport

regulation of innate immune response

MCM complex

tRNA aminoacylation

focal adhesion

cytoplasmic translation

−0.4

−0.2

0.0

0.2

0 500 1000 1500
Rank

M
ed

ia
n 

co
rr

el
at

io
n 

to
 tr

an
sp

or
t s

co
re

−Log10(p-value)
25

50

75

100

Extended Data Fig. 8 | Protein set enrichment analysis on protein correlations to transport score. The vector
of ordered protein correlations to transport score were analyzed for enriched protein sets (Gene-Ontology terms). The
results for which are shown at 1% FDR, ordered by their relative enrichment, some of which are highlighted.
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Extended Data Fig. 9 | Predictive power of correlations to transport remain similar at different filtering
levels. To assess the robustness of our findings, changes in transport were either calculated based on a the 25 most
differentially abundant proteins in the original bulk data, or b all differentially abundant proteins at 1% FDR (308
proteins). The trends are similar, but with decreasing predictive power as proteins with less biological signal are
included for computing the slopes.
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Extended Data Fig. 10 | Protein-set enrichment analysis of whole-cells as a result of each siRNA knockdown.
The abundances of differentially enriched Gene-Ontology terms are plotted (y-axis) for each siRNA condition (x-axis);
the x-axis is ordered based on each knocked-down protein’s correlation to transport score. knockdowns of potential
transport suppressors are generally enriched for macrophage-like processes and nucleocytoplasmic transport compared
to knockdowns of potential transport enhancers.
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Supplementary Fig. 1 | Volcano plots to validate siRNA mediated knockdowns in whole-cells. Differential
abundance analysis comparing knockdown to negative control (non-targeting) knockdown, shown as volcano plots
from the whole-cell fractions of THP-1 derived macrophages. Plots highlight and label the knocked-down protein.
All knocked-down proteins are less abundant in the knockdown condition than in the negative control and 6/16 are
statistically significant.
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Supplementary Fig. 2 | Volcano plots to validate siRNA mediated knockdowns in nuclei. Differential abun-
dance analysis comparing knockdown to negative control (non-targeting) knockdown, shown as volcano plots from
the nuclear fractions of THP-1 macrophages. Plots highlight and label the knocked-down protein. All knocked-down
proteins are less abundant in the knockdown condition than in the negative control and 13/16 are statistically signifi-
cant.
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Supplementary Fig. 3 | Differences in protein transport for each biological replicate. All biological replicates for
each siRNA-mediated gene-knockdown are shown. Slopes for each experimental condition are calculated with respect
to the original bulk data (x-axis). The difference in slopes, which we infer as the change in global protein transport as
a result of the knockdown, is annotated for each biological replicate and quantified relative to its respective matched
biological replicate negative control (non-targeting) siRNA.
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