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ABSTRACT: Physiological processes, such as the epithelial−mesenchymal
transition (EMT), are mediated by changes in protein interactions. These
changes may be better reflected in protein covariation within a cellular
cluster than in the temporal dynamics of cluster-average protein abundance.
To explore this possibility, we quantified proteins in single human cells
undergoing EMT. Covariation analysis of the data revealed that functionally
coherent protein clusters dynamically changed their protein−protein
correlations without concomitant changes in the cluster-average protein
abundance. These dynamics of protein−protein correlations were
monotonic in time and delineated protein modules functioning in actin
cytoskeleton organization, energy metabolism, and protein transport. These
protein modules are defined by protein covariation within the same time
point and cluster and, thus, reflect biological regulation masked by the
cluster-average protein dynamics. Thus, protein correlation dynamics across single cells offers a window into protein regulation
during physiological transitions.
KEYWORDS: single-cell proteomics, dynamics, protein correlations, protein covariation, cell adhesion, metabolism,
epithelial−mesenchymal transition, EMT, SCoPE2, nPOP

■ INTRODUCTION
The epithelial−mesenchymal transition (EMT) plays a key
role in embryonic and adult development, tissue repair and
wound healing, and pathologies such as fibrosis and cancer.1−3

EMT involves major changes in cell behaviors. While most
attention is given to cell morphology, adhesion, migration, and
invasiveness, EMT also impacts cell cycle activity, senescence,
apoptosis, metabolism, genomic stability, stemness, and drug
resistance, among other cell behaviors. The pleiotropic effect of
EMT on cell behaviors is mediated by complex regulatory
networks, including transcription factors, post-transcriptional
and post-translational signaling, intercellular communication,
and the microenvironment.

EMT regulation across single cells is nonuniform. Single-cell
RNA and morphological analysis show significant variability
among cells undergoing EMT.4,5 In what ways variability in
protein abundance contributes to single-cell heterogeneity
during EMT remains unclear. Since RNA level is an unreliable
predictor of protein abundance, protein level variation cannot
be reliably inferred from single-cell RNA data.6−9 Indeed, post-
transcriptional processes, such as endocytosis, protein syn-
thesis, modifications and degradation, play a significant role in
EMT regulation.10−12

While this variability poses challenges for population average
measurements, it offers the potential to infer regulatory
processes from protein covariation across single cells.13 Indeed

protein covariation across individual cells may reflect protein
interactions and can be detected by single-cell protein
measurements with sufficient accuracy, precision and through-
put.14,15 Such analysis is becoming feasible due to the
development of powerful single-cell mass spectrometry (MS)
proteomic methods.16−24 As a result, protein covariation across
single cells can be quantified.25−28

Here, we applied single cell proteomics29−31 to quantify the
proteomes of single cells undergoing EMT triggered by TGFβ,
a prominent stimulus for EMT in physiological and
pathophysiological processes. Analyzing the system across
time, we observed within cluster variation across single cells.
This cellular variability corresponded to strong protein
covariation across the single cells within each time point. We
systematically quantified this covariation and its change in
time. This revealed clusters of proteins whose covariation
evolved concertedly in time. These concerted changes in
protein covariation include singling proteins, cytoskeleton
proteins, and metabolic enzymes whose mean abundance per
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time point does not change over time. Thus, protein
covariation across single cells provides information about
cellular remodeling that is complementary to changes in
protein abundance.

■ MATERIALS AND METHODS

Cell Culture

Nontransformed human mammary epithelial cells (MCF-10A,
ATCC) were maintained in growth medium consisting of
DME medium/Ham’s F-12 (ThermoFisher) containing
HEPES and L-glutamine supplemented with 5% (v/v) horse
serum (ThermoFisher), 20 ng/mL EGF (Peprotech), 0.5 μg/
mL hydrocortisone, 0.1 μg/mL cholera toxin, 10 μg/mL
insulin (Sigma), and 1% penicillin−streptomycin (Thermo-
Fisher), as described previously.32 To induce EMT, cells were
treated with 20 ng/mL TGFβ (Peprotech) in growth medium
for 0, 3, and 9 days.33 TGFβ-containing medium was refreshed
every 3 days.
Sample Preparation

Cells were harvested as single-cell suspension and prepared for
MS analysis using Nano-ProteOmic sample Preparation
(nPOP) as described by Leduc et al.34,35 The automated
collection of prepared samples had not been developed yet26

and so samples were manually collected using a pipet (using 5
μL of mass spectrometry grade Acetonitrile then water
respectively) and transferred into a 384-well plate (Thermo
AB1384). The samples were then dried down in a SpeedVac
vacuum evaporator and resuspended in 1.07 μL of 0.1%
Formic Acid (buffer A) and tightly sealed using an aluminum
foil cover (Thermo Fisher AB0626).

For the bulk experiments, cells were harvested (in MS grade
water, at roughly 2000 cell/μL) and frozen at −80 °C. The
samples were prepared using mPOP,36 following guidelines for
the digest of carriers as outlined in Petelski et al.30 Post digest,
the samples were dried down in a SpeedVac vacuum
evaporator and resuspended at a concentration of 1 μg/μL
in 0.1% Formic Acid (buffer A) in a glass insert with a
polyspring within an HPLC vial. An aliquot of the bulk samples
(for each time point) was labelled with TMTPro 126C, as
outlined in Petelski et al.30 (preparation of carrier material)
and injected as above to generate bulk DIA runs to use for
DART-ID.
Peptide Separation and MS Data Acquisition

The separation of the single cell samples was performed at a
constant flow rate of 200 nL/min using a Dionex UltiMate
3000 UHPLC. From the 1.07 μL of sample in each well, 1 μL
was loaded onto a 25 cm × 75 μM IonOpticks Odyssey Series
column (ODY3−25075C18). The separation gradient was 4%
buffer B (80% acetonitrile in 0.1% Formic Acid) for 11.5 min, a
30 s ramp up to 8% B followed by a 63 min linear gradient up
to 35% B. Subsequently, buffer B was ramped up to 95% over 2
min and maintained as such for 3 additional minutes. Finally,
buffer B was dropped to 4% in 0.1 min and maintained for 19.9
additional minutes.

The mass spectra were acquired using a Thermo Scientific
Q-Exactive mass spectrometer from minutes 20 to 95 of the
LC method. The electrospray voltage of 1700 V was applied at
the liquid−liquid junction of the analytical column and transfer
line. The temperature of the ion transfer tube was 250 °C, and
the S-lens RF level was set to 80.

For the single cell samples, after a precursor scan from 450
to 1600 m/z at 70,000 resolving power, the top 7 most intense
precursor ions with charges 2 to 4 and above the AGC min
threshold of 20,000 were isolated for MS2 analysis via a 0.7 Th
isolation window with a 0.3 Th offset. These ions were
accumulated for at most 300 ms before being fragmented via
HCD at a normalized collision energy of 33 eV (normalized to
m/z 500, z = 1). The fragments were analyzed at 70,000
resolving power. Dynamic exclusion was used with a duration
of 30 s and a mass tolerance of 10 ppm.

The bulk sample separation and mass spectra acquisition was
carried out using the V2 method outlined by Derks et al.,37

briefly, the duty cycle for the data independent acquisition of
spectra consisted of an MS1 scan at 70,000 resolving power
limited to a maximum injection time of 300 ms, an AGC
maximum of 3 × 106 and normalized collision energy of 27.
Each MS1 scan was followed by 40 MS2 scans at 35,000
resolving power, an AGC max of 3 × 106 and a maximum fill
time of 110 ms. The DIA window widths, in order, were: 25 ×
12.5 Th, 7 × 25 Th and 8 × 62.5 Th, there was a 0.5 Th
overlap in windows. The bulk sample labeled with 126C was
searched using Spectronaut (Version 15.4.210913.50606) in
directDIA mode using a spectral library that was prepared via
an in-silico digest of a SwissProt Fasta database that contained
20,375 proteins. TMT-Lys and N-ter were set as fixed
modifications and N-Term Acetylation M-Oxidation were set
as variable modifications. The search results were used with
DART-ID for updating the confidence of peptide identifica-
tions.
MS Data Searching

The raw single cell data was searched by MaxQuant,38 a
software package for proteomics data analysis, against a protein
sequence database that included all entries from the human
SwissProt database and known contaminants. The MaxQuant
search was performed using the standard workflow, which
includes trypsin digestion and allows for up to two missed
cleavages for peptides with 7 to 25 amino acids. Tandem mass
tags (TMTPro 16plex) were specified as fixed modifications,
while methionine oxidation and protein N-terminal acetylation
were set as variable modifications. Carbamidomethylation was
disabled as a fixed modification, because it was not performed.
Second peptide identification was also disabled. The
calculation of the peak properties was enabled. All peptide-
spectrum matches (PSMs) and peptides found by MaxQuant
were exported to the evidence .txt files. The confidence in the
PSMs was further updated using DART-ID, which is a
Bayesian framework for increasing the confidence of PSMs that
were consistently identified at the same retention time with
high-confidence PSMs for the same amino acid sequences.39

The updated data were filtered at 1% FDR for both peptides
and proteins as described by Petelski et al.30

The bulk data was searched using DIANN40 version 1.8.1
beta 7 using a spectral library that was prepared via an in-silico
digest of a SwissProt Fasta database that contained 20,375
proteins. The mass accuracy was set to 10, methionine excision
was set as a variable modification, MBR was on, and outputs
were filtered at 1% FDR.
Data Filtering and Analysis

The peptide by cells matrices were processed by the SCoPE2
analysis pipeline,29,30,41 which resulted in 4,571 proteins
quantified across 420 single cells. However, each single cell
had only about 1,000 proteins quantified and many proteins
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were quantified in relatively few single cells. Thus, we subset
the proteins to the 1,893 proteins quantified in at least 30
single cells from the data set and at least 3 single cells from
each time point.

We computed the pairwise Pearson correlations for each
time point between these 1,893 proteins using only measured
abundances, without imputation, which resulted in three 1,893
× 1893 correlation matrices, R1, R2, and R3 for days 0, 3, and 9
respectively. We further computed the Pearson correlations
among correlation vectors of R1 and R3 corresponding to the
same protein as previously described,25,29,42 resulting in a
vector v. Each element of v corresponds to one protein and
quantifies the similarity of its correlations to the remaining
1,892 proteins. The elements of v were used to explore a
pairwise combination of proteins whose correlations change
significantly between days 0 and 9 and the examples shown in
Figure 2. To calculate the statistical significance for the change
in the correlations, we computed the same correlation
difference for 108 randomized samples and estimated the
fraction of randomized samples whose correlation differences
exceed the difference observed in the data.

For the systematic analysis of correlations in Figure 3, we
computed the matrix of correlation differences ΔR = R3 − R1
and preserved only its rows and columns corresponding to a
set ϕ of 418 proteins with no missing data, i.e., the
corresponding correlations could be computed only from
quantified proteins both for day 0 and 9. Then, we quantified
the average magnitude of correlation change for each of these
418 proteins by computing the norm of its corresponding
column in ΔRϕ, resulting in vector m. To select the proteins
whose correlations change the most, we selected the subset ω
of 209 proteins having norms in m larger than the 50%

percentile of m (the median of m). Then we performed means
clustering with k = 3 on ΔRω and used the 3 resulting clusters
to display R1ω, R2ω, and R3ω and their differences in Figure 3.
As an alternative approach, we clustered ΔRω hierarchically
and used the resulting permutation to order the rows and
columns of R1ω, R2ω, and R3ω and their differences, as displayed
in Figure S1.

To quantitatively display the dynamics of correlations for the
3 clusters derived by K-means clustering, we computed the
mean correlation for all pairwise correlations between proteins
assigned to a cluster for each of the 3 time points, Figure 4.
Similarly, we computed the average protein abundance for all
proteins (log2 fold change relative to the mean) assigned to a
cluster for each of the 3 time points. Only measured protein
values were used for computing the average-cluster protein
abundance; no imputation values were used.

For the bulk samples, DIA-NN reports were further filtered
at 1% Lib.PG.Q.Value and subset to contain only proteotypic
peptides. The MS2 level peptide intensities (Precursor.Nor-
malized) were collapsed to protein levels across runs using the
diannMaxLFQ function from the diann R package. Each bulk
samples protein level outputs were normalized to its median to
account for differential loading, converted to relative levels
using the mean across runs and finally log2 transformed.

Protein set enrichment analysis (PSEA) was subsequently
carried out for each biological replicate individually. The
Kruskall−Wallis test was used to test the significance of the
difference in the relative intensity distributions of proteins
belonging to a GO term across the three time points. Only GO
terms where at least 30% of proteins were present across
samples were tested, and the maximum number of proteins per
GO term was limited to 55. The p values obtained across all

Figure 1. Experimental design, data sets overview and validation. (a) Epithelial cells (MCF-10A) were treated by TGFβ for the indicated duration
and then collected for single-cell and bulk protein analysis by MS. (b) Single cells plotted in the space of the principal components of their
proteome data. The cells are colored by the day post TGFβ treatment. (c) The median abundance of statistically significant protein sets across bulk
samples (two biological replicates, BRep1 and BRep2) analyzed by label-free DIA. (d) Single cells in the space of their principal components were
colored by the Z scored abundances of select, significantly differential GO terms identified from the bulk proteomes as shown in panel (c).
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tests were adjusted for the multiple hypotheses tested using the
Benjamini−Hochberg procedure, and resultant Q values were
used to control the FDR at 5%. The median value of a protein
within a GO term was used to represent its relative abundance.

■ RESULTS

Dynamics of Proteins Abundance and Variability during
EMT

We aimed to quantify EMT-mediated changes in protein
abundance over a time span of several days. To this end, we
performed single-cell proteomics on nontransformed human
mammary epithelial cells (MCF-10A) treated with trans-
forming growth factor beta (TGFβ) for 0 (untreated), 3 and 9
days, Figure 1a. The chosen dosage of TGFβ has been shown
by us and others to induce overt EMT in MCF-10A
cells.33,43,44 The time points were chosen to interrogate
transient (3 days) and sustained (9 days) responses to
TGFβ during which cells will be in intermediary and overt
phases of EMT. Our MS measurements resulted in quantifying
about 952 proteins per single cell and 4,571 proteins quantified

in at least one cell from the total set of 420 individual cells
analyzed, Table S1. However, many of the proteins were
quantified in only a fraction of the cells, and we focused on a
subset of 1,893 proteins that are quantified in over 30 single
cells from the data set and over 5 single cells from each time
point. Such levels of missing data are common in many data
sets and limit the number of proteins that can be analyzed
without imputing missing values.45

Principal component analysis (PCA) of protein abundance
data shows that cells from the three time points segregate into
clusters in PC space, as shown in Figure 1b. The separation
suggests that the magnitude of changes in protein abundance
in time is large enough to readily distinguish cells at different
temporal phases of EMT. The first PC primarily separates
untreated cells from TGFβ-treated cells regardless of how far
into EMT they have progressed. Cells with transient (3 d) and
sustained (9 d) exposure score similarly along PC1 while the
second PC separates cells with transient (3 d) and sustained (9
d) exposure to TGFβ.

Two biological replicates from each time point were
analyzed by bulk label-free DIA, and the data analyzed using

Figure 2. Protein correlations change in the course of EMT. (a) Pairwise correlations between RSPH10B and TUBB3 at each of the 3 time points.
(b) Pairwise correlations between STK16 and FLNB at each of the 3 time points. The probability of observing these changes in correlations in the
randomized data is low, p < 10−8, q < 10−2.
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protein set enrichment analysis.6 The results indicated multiple
functional groups of proteins with differential abundance
across the time points, as shown in Figure 1c. Specifically,
DNA replication and heat-shock proteins have higher
abundance in epithelial cells, consistent with their active
proliferation. Conversely, proteins functioning in cytoskeleton
and cell adhesion increase in abundance in days 3 and 9. This

trend is particularly strong for hemidesmosome assembly and
cell−cell junction proteins. These functional enrichments are
highly reproducible across the two biological replicates and
generally consistent with previous EMT observations.

To explore the relationship between our bulk and single-cell
measurements, we used functional protein groups exhibiting
differential abundance in the bulk data to color-code single

Figure 3. Dynamics of protein covariation during EMT. (a) Matrices of pairwise protein correlations at days 0, 3, and 9 clustered using k-means
clustering with k = 3. The 3 clusters are denoted by c1, c2, and c3. (b) Matrices of differences between pairwise protein correlations for the
indicated time points. The rows and columns for all days correspond to the same proteins ordered in the same way, namely, based on clustering the
matrix of correlation differences between Day 9 and 0.

Figure 4. Differences between the dynamics of within-cluster protein correlations and cluster-average abundance. (a) Comparison of pairwise
correlations for cluster 3 (c3) between days 0 and 9. (b) Mean correlations among the proteins from each cluster across time. (c) Mean abundance
of the proteins from each cluster across time. (d) Correspondence between mean cluster correlations and mean cluster protein abundances. The
correlation is weak (r = −0.14) and not statistically significant (p = 0.7).
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cells, Figure 1d. The results indicate that the protein
abundance enrichment is consistent between the bulk and
single-cell measurements, but the single cells exhibit additional
variation within a time point. Specifically, we observe within
cluster variation around the mean values captured by the bulk
measurements. This protein variation across single cells is the
focus of our subsequent analyses.
Dynamics of Protein Covariation during EMT

Next, we sought to analyze pairwise protein correlations for a
set of proteins selected by correlation vector analysis (similar
to previous uses in refs 29, 42) to be correlated at both days 0
and 9 but in different ways. An example of such a pair is shown
in Figure 2a: RSPH10B and TUBB3 correlate negatively in
epithelial cells (Day 0) and positively in mesenchymal cells
(Day 9). This change in correlation is statistically significant (p
value <10−13, q value <0.1%). Day 3 (whose data was not used
for protein selection) exhibits an intermediate correlation
pattern, suggesting concerted changes in correlation over EMT
progression.

The change in pairwise correlations in Figure 2a is not
associated with significant changes in the mean abundance of
these proteins in Days 0, 3, and 9, suggesting that the changes
in correlation patterns may reveal molecular rearrangements
inaccessible from measuring mean protein levels. This
observation is bolstered by the data for other protein pairs
exhibiting similarly concerted temporal changes in covariation
without significant changes in mean abundance, Figure 2b.

Next, we sought to expand the correlation patterns
suggested by individual pairs of proteins (Figure 2) to a
systematic exploration of changing global patterns of
covariation, Figure 3. To this end, we started by selecting
the subset of proteins with multiple pairwise observations (i.e.,
all proteins for which we can compute pairwise correlations
from measured protein abundances) and substantial changes in
covariation. To identify proteins with changing correlations, we
subtracted the correlations for Day 0 from the correlations for
Day 9 and computed the norms of the vectors of correlation
differences. Then we selected the proteins (50% percentile)
having the largest magnitude difference between Day 0 and
Day 9 (Figure S1) or (20% percentile) having the largest
magnitude difference between Day 0 and Day 9 (Figure S2).
The correlations between these proteins defined 3 main
clusters when clustered hierarchically Figure S1, and thus we
used K-means clustering with k = 3 to define 3 discrete clusters
(c1, c2, and c3).

These 3 clusters are well-defined, as shown by the matrices
of pairwise correlations within each cluster (Figure 3a) and
their corresponding differences across time (Figure 3b). The
global change in correlations for each cluster is monotonic
(Figure 3), and this monotonicity is quantified by the
dynamics of mean cluster correlations displayed in Figure 4.
Since the data from Day 3 have not been used for selecting or
clustering proteins, their consistency with the monotonic
trends bolsters our confidence in the results.

Remarkably, the dynamics of the mean protein correlations
for clusters 1, 2, and 3 are not reflected in the corresponding
dynamics of mean protein abundances, as shown in Figure 4.
For a particular cluster, such as c3, the correlations scale in
time, while the proteins from the cluster remain positively
correlated to each other, as shown in Figure 4a. Based on this
observation, we estimated the mean correlation for each cluster
and plotted the estimates over time, Figure 4b. Similarly we

estimate the mean protein abundance of each cluster over time
(Figure 4c), and evaluated the dependence between these
mean cluster estimates as shown in Figure 4d. The result
indicates no dependence between the dynamics of protein
correlations and mean protein abundance, consistent with the
observation for the protein pairs shown in Figure 2. These
results reveal biological signals reflected in the protein
covariation across single cells from the same time point but
not from the corresponding cluster-average protein abundance,
Figure 4a−c.

To identify biological functions corresponding to each
cluster, we performed gene ontology (GO) term analysis46 for
terms enriched in each cluster relative to all analyzed proteins.
We found many statistically significant protein groups in these
clusters, which are provided as Supplemental Tables and a few
characteristic groups are highlighted in Table 1. The first

cluster comprises proteins involved in cytoskeletal regulation,
including actin, vimentin, tubulin subunits, vinculin, filamins
and contractility regulators, such as RhoA, myosin and
tropomyosin. The proteins in this cluster broadly span
cytoskeletal regulation and show statistically significant enrich-
ment when the analysis is extended to more proteins, Figure
S2. Meanwhile, the proteins in the second and third clusters
showed statistically significant enrichment for metabolism and
protein synthesis and transport, respectively (Supplemental
Tables). The second cluster was enriched for proteins involved
in glycolysis and oxidative phosphorylation, consistent with the
role of EMT in regulating aerobic and anaerobic utilization of
glucose.47 Many of the enriched functions found in the third
cluster involved protein synthesis and transport, including core
ribosomal proteins. The third cluster is enriched for other
functions associated with EMT, including telomere regulation
and senescence and cell response to DNA damage. Taken
together, the protein functions found across the three clusters
correspond to the multifaceted effect of EMT on cellular
functions.

■ DISCUSSION
Protein covariation across single cells may identify regulatory
interactions,13 and here we demonstrate its potential to
delineate dynamic remodeling of protein networks during
EMT. Our work builds upon previous observations of RNA
covariation48 and protein covariation25−28 and extends the
analysis and interpretation toward temporal dynamics during
cellular transitions.

Table 1. Enriched Biological Functions in the Correlation
Clustersa

cluster enriched function proteins

c1 regulation of actin filament-
based process

fascin, RhoA, IQGAP1, Arp3

c2 glucose and pyruvate metabolic
processes

pyruvate kinase, aldolase, enolase,
lactate dehydrogenase

oxidative phosphorylation ATP synthase, cytochrome C
oxidase

c3 protein synthesis and transport ribosomal proteins
telomere maintenance, cell
response to DNA damage

XRCC5, XRCC6, PARP1, PCNA

aThe table summarizes protein sets and associated representative
proteins from performing GO Gorilla analysis on clusters c1, c2, and
c3. All terms are significant at 1% FDR. The full results from the
analysis are available as Supplemental Tables.
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Protein covariation has important benefits relative to RNA
covariation for inferring biological regulation. First, protein
quantification is based on sampling sufficient number of copies
from most proteins (often 100s of copies)29,49,50 to support
reliable quantification of correlations across single cells (not
clusters of cells), as shown in Figure 2. Second, much of the
regulation may be driven by protein synthesis and degradation
of protein subunits of complexes,51 and this component is
detectable only at the protein level. For these two reasons,
protein covariation offers an informative perspective toward
biological regulation.13

We based our analysis on correlations between proteins,
with many pairwise observations. Many of the proteins
quantified in our data set did not have sufficient number of
pairwise observations to be included in this analysis due to the
stochastic approach of shotgun data acquisition. This
limitation can be overcome in future studies by using
prioritized data acquisition (pSCoPE)28,52 or multiplexed
data independent acquisition (plexDIA).37,53,54 Thus, using
the latest generation of single-cell proteomic technology and
future innovations55 will further empower the approach that
we used in this study.

Comparison of the mean abundance and covariation over
the time course of EMT provides intriguing insights. For
cluster 1 (cytoskeletal proteins), the mean abundance of
proteins increases, as is generally expected during EMT
progression. However, the correlation in the expression of
cytoskeletal regulators decreases, suggesting that the expression
of cytoskeletal regulators becomes more heterogeneous in the
population as EMT progresses. Since the cytoskeleton confers
cell shape, one predicts that increased heterogeneity in its
regulators will lead to cell morphological variability. This
expectation is consistent with single-cell analysis of cell
morphology that shows increased heterogeneity in cell shape
as EMT progresses.56

In addition to cell shape changes, EMT shifts the balance
between aerobic and anaerobic utilization of glucose.47

However, our data show that the mean abundance of cluster
2 proteins (metabolism) remains constant during the EMT
progression. Thus, changes in the mean abundance do not
explain shifts in metabolism. In contrast, the correlation in
expression of cluster 2 proteins increases as EMT progresses,
suggesting that functional changes in metabolism may be
achieved through coordinated changes in abundance (cova-
riation) rather than a change in mean abundance.
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