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Abstract
Biological functions stem from coordinated interactions among proteins, nucleic acids
and small molecules. Mass spectrometry technologies for reliable, high throughput
single-cell proteomics will add a new modality to genomics and enable data-driven
modeling of the molecular mechanisms coordinating proteins and nucleic acids at
single-cell resolution. This promising potential requires estimating the reliability of
measurements and computational analysis so that models can distinguish biological
regulation from technical artifacts. We discuss approaches for developing both abstract
and mechanistic models that aim to biologically interpret the measured differences
across modalities. Mechanistic models of direct molecular interactions will provide
generalizable and predictive representations of biological systems.

Introduction
Single-cell transcriptomic and genomic technologies have advanced our understanding of
cellular diversity1–4 and transcriptional regulation5. While these technologies excel in identifying
cell subpopulations, they are insufficient to model regulatory events that include protein
interactions, such as those between DNA and transcription factors or between RNA and RNA
binding proteins6,7. Modeling such mechanisms requires proteogenomic analysis, which we
define as joint modeling of nucleic acids, proteins, their interactions and modifications.
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Proteogenomic approaches have proven useful with bulk data8, and we project that single-cell
proteogenomic modeling will extend their utility by (i) enabling cell-type resolved analysis and (ii)
providing more data points (across single cells) and hence more statistical power for data-driven
modeling9 of regulatory mechanisms.

Single-cell proteogenomics will help connect single-cell genomics with the numerous
post-transcriptional mechanisms – such as dynamically regulated protein synthesis,
degradation, translocation, and post-translational modifications – that shape cellular
phenotypes. Understanding these mechanisms requires direct and reliable measurements of
proteins and nucleic acids. Such data may allow for interpreting the relative contributions and
dynamics between transcriptional and post-transcriptional regulation, leading to a more
complete understanding of gene regulation and its impact on functional phenotypes.

Proteogenomic modeling requires accounting for measurement reliability; this is essential for
distinguishing biological regulation from measurement noise. Yet, estimating the reliability of
single-cell measurements is challenging, especially when using affinity reagents with unknown
specificity for their cognate epitopes in the context of the analyzed samples. This challenge
applies to commonly used single-cell proteogenomic methods as they rely on antibody-based
protein measurements10–13. The use of multiple affinity reagents per protein substantially
increases specificity of detection but can also limit sensitivity14. Uncertainty from potential
off-target binding fundamentally limits the reliability of quantitative modeling.

This limitation can be addressed by single-cell tandem mass spectrometry (MS) because it
allows for estimating the quantification reliability for a large number of proteins based on the
consistency of multiple measurements per peptide per single cell and multiple peptides per
protein15,16. While the potential of MS to estimate the reliability of protein measurements has
been used to assess the extent of post-transcriptional regulation across healthy and diseased
human tissues17–19, it has not yet been applied to single-cell analysis. Here, we discuss the
potential and promises of using single-cell proteogenomics for modeling molecular mechanisms
in single cells.

Types of proteogenomic analysis

Measurements of proteins and nucleic acids can be paired to support proteogenomic modeling.
This can be done by measuring proteins and mRNAs in different single cells from the same
population and subsequently integrating measurements (Fig 1a; demonstrated in ref.20), or by
multimodal measurements of multiple modalities in the same cell, including chromatin
accessibility, proteins, and mRNAs (Fig. 1b; demonstrated in ref.21–24). Integrated analysis has
the advantage of being amenable to a large variety of approaches for sample preparation and
analysis.
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Integrated datasets
If protein and RNA levels are measured in different cells, the cell clusters can be aligned across
datasets via common principal component analysis or by dedicated algorithms25–28. Since these
algorithms are not optimized for MS protein data, new methods that model the error distributions
and missingness patterns of MS data are likely to substantially improve integration. Once cell
type clusters or gradients of cell states are aligned and clearly defined, statistical models can
quantify deviations between protein and mRNA levels that correspond to post-transcriptional
regulation. Such alignment is challenging, and the challenge increases with the desired
resolution of alignment29. Errors in the alignment may contribute to deviations between RNA and
protein levels and must be accounted for in making biological inferences.

Multimodal datasets
Current multimodal methods for obtaining single-cell MS proteomic and RNA-seq data have
limited throughput, but we anticipate that high-throughput methods will be developed, e.g., by
splitting cell lysates from single cells or by advanced methods that allow separating proteins and
RNAs from a single cell. Despite their differences, both integrated and multimodal approaches
may allow for developing rigorous models of transcriptional and post-transcriptional regulation in
complex samples.

Figure 1 | Tradeoffs of integrated and multimodal proteogenomic measurements. Integrated
analysis refers to measuring protein or RNA in single cells independently and computationally aligning
the samples. Resolution of analysis may be limited to the level of cell clusters due to the challenge of
aligning modalities. Yet, it allows experimenters more flexible options for sample preparation. Fewer
sample preparation options exist for multimodal analysis (shown in b) where proteins and RNA are
measured in the same single cells. This approach obviates data integration and may allow for
single-cell resolution modeling.
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Estimating reliability
Developing rigorous models requires estimation of both random or systematic measurement
errors. Random noise is more easily estimated by comparing the consistency of measurements
across replicates, while systematic noise can be estimated by comparisons between methods.
For example, the contribution of random noise to observed fold changes between two different
cell types can be estimated from non-overlapping ensembles of cells from each cluster, Fig. 2a.
Specifically, divergence of the corresponding distributions for each ensemble reflects random
noise, denoted with Δε2 in Fig. 2b.

Estimating random and systematic errors
Systematic errors are harder to estimate, especially when measurement methods have high
precision but low accuracy. Systematic deviations can be identified by comparing the
consistency between measurement methods that do not share biases, Δε1 in Fig. 2b. For
example, high dropout rates for droplet single-cell sequencing methods may overestimate or
underestimate fold changes between cell clusters depending upon how data are processed30.
Such systematic biases may be estimated and managed by performing independent
measurements, e.g., SMART-seq3 or RNA-fluorescence in situ hybridization (FISH)31. Similarly,
systematic ratio compression of protein fold changes due to coisolation of isobarically labeled
peptides may be detected and accounted for by performing quantification that is not affected by
coisolation, such as plexDIA15,32. Additionally, depending on data acquisition strategy, multiple
data points that have different interferences can be obtained from the same peptide before and
after the fragmentation process required for identification16. More generally, MS offers multiple
opportunities for detecting systematic errors. For example, proteins can be digested by different
enzymes or their peptides labeled with different mass tags. Different proteases and mass tags
produce different peptide ions from the same protein, and these help identify and mitigate
systematic errors due to interferences. The consistency between measurements of peptides
mapping to the same protein can provide largely independent data points in the context of
inferences, though proteoforms have to be accounted for33,34.
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Figure 2 | Estimating random and systematic errors. RNA and proteins can be measured with
different methods that share few biases. a) Cell types can be aligned across different methods, and
different ensembles of cells can be selected both within and across methods. b) Different ensembles
(from cell type B) allow for assessing contribution of signal to method specific bias (Δε1) and random
error from within method variation (Δε2).

Different computational workflows can also contribute to different sources of systematic bias35–37.
For example, when performing analysis on integrated datasets, inaccurate alignment can result
in each cluster having a different cell type representation across datasets, which can be
misinterpreted as post-transcriptional regulation. Thus, models should also account for the
reliability of integration, e.g., by comparing the consistency of clustering the same group of cells
utilizing different subsets of gene products38.

Inferring regulation
Biological regulation may be inferred by models at varying levels of abstraction and mechanistic
resolution, Fig. 3. Simple models may estimate systematic discrepancies in mRNA and protein
abundance that exceed measurement noise (Fig. 3a). These models can reveal
post-transcriptional regulation associated with phenotypic states or with functional activities of
individual cells, such as the association of endocytic activity with post-translational modifications
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by proteolysis39. Such associations may lead to new hypotheses that can be probed deeper by
follow up perturbation experiments. More detailed biophysical models may discriminate between
different topologies of signaling networks9 and infer associated rates of molecular
interconversions (Fig. 3b). These models are more directly interpretable but require either more
direct measurements or more assumptions.

Abstract models
The simplest model connecting different layers of gene regulation can be framed as hypothesis
testing; for example, testing whether the protein products of a gene are determined solely by its
RNA products or not. This hypothesis testing abstracts the molecular mechanism of
post-transcriptional regulation into a constant, e.g., the protein to RNA ratios (PTRs), Fig. 3a.
Similarly, models can test hypotheses about RNA isoforms or modifications, such as
pseudouridylation, affecting protein abundance. By explicitly modeling sources of error due to
measurement, models can distinguish between instances that have similar magnitude of PTR
variation but have different biological interpretation, Fig. 3a. Such abstracted models can be
constrained either by integrated or multimodal data (Fig. 1) and have been applied to bulk17,40

and single-cell proteogenomic data20,41, however measurement reliability was not accounted for
in all cases.

Factor analysis represents another abstract type of modeling that can incorporate known
experimental structures, such as sparse interactions and spatial information 42–44 When applied
to single-cell proteogenomics data, factor analysis can identify cell-type specific modules of
transcripts covarying with their corresponding transcription factors.
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Figure 3 | Regulatory processes can be modeled at different levels of abstraction and
mechanistic resolution. a) At a high level of abstraction, agreement between protein and mRNA
levels across cell types can be explored through a statistical framework. Models may empower
discrimination between differences in RNA and protein that are likely to have biological or technical
origin by modeling experimental and computational sources of error. b) More mechanistically, changes
in parameters such as transcription factor abundance, synthesis, and degradation can be modeled in
time allowing for more interpretable and direct biophysical understanding of gene regulation.

Mechanistic models
While abstract models may elucidate high level instances of post-transcriptional regulation,
understanding general principles of which factors strongly contribute to post-transcriptional
regulation requires more finely resolved models. To enhance the interpretability, abstract models
can incorporate more realistic molecular mechanisms, Fig. 3b. For example, instead of modeling
post-transcriptional regulation with a single constant, its stages (protein synthesis and
degradation) can be modeled by detailed rate equations that explicitly factor in regulators, such
as microRNAs, RNA binding proteins, and ubiquitin ligases. Such mechanistic models generally
benefit from prior knowledge45 and from multimodal measurements, which allow reducing
assumptions and encoding temporal information. This information is implicit in proteogenomic
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data due to the time delay between RNA and protein dynamics46,47, and can be made more
explicit and quantitative by pulse-chase metabolic labeling RNA with 4-thiouridine or proteins
with amino acids coded by stable isotopes. Such approaches enable direct measurements of
protein synthesis and degradation rate, and may provide reliable enough time information to
support causal inference.

Long-standing interest in mechanistic modeling of gene expression has contributed to elegant
models whose applications have been circumscribed by the limited scope of protegenomic data.
For example, fluorescent measurements of a few proteins allowed studying the influence of
transcription factor (TF) binding on downstream protein production in single cells48,49. Yet, these
pioneering experiments were limited to a few proteins in engineered cells. The data did not
support modeling latent variables that regulate protein levels, such as TF modifications, RNA
levels, and rates of protein synthesis and degradation. These factors may now be measured at
increasing scales50 or modeled directly and related to the abundance of RNA binding proteins
and ubiquitin ligases. Thus, emerging technologies may provide proteogenomic data with the
potential to support more comprehensive and mechanistic models while simultaneously
extending the analysis to thousands of gene products across diverse samples, including from
human patients.

Proteogenomic data parameterized in absolute units, such as copies of protein molecules per
cell or molar concentrations, are essential for answering many questions. For example,
understanding the specificity and kinetics with which limited copies of a transcription factor bind
across the genome51. Such parameterization can be achieved when proteins are quantified by
MS relative to spiked in standard of proteins or peptides with known absolute abundance. With
such data, the models from Fig. 3b can reveal new regulatory principles, such as how the mode
and dynamics of regulation depend on protein copy numbers or turnover rates.

Proteogenomic models defined in terms of direct molecular interactions quantified by
biophysical parameters are likely to be more generalizable. Unlike indirect associations that vary
from dataset to dataset, molecular interactions provide more invariant representations of
biological systems that provide (i) more specific testable hypotheses and (ii) more robust
predictive models.

Conclusion and outlook
Maturing MS technologies will add a new modality to single-cell multimodal measurements, and
thus contribute to the emergence of single-cell proteogenomics. The quantitative accuracy and
reliability of these measurements will empower biological models proving generalizable and
predictive representations of biological systems. These models will help quantify and interpret
differences between single-cell modalities.
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