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Abstract

Stem cell differentiation is a highly dynamic process involving pervasive changes in gene

expression. The large majority of existing studies has characterized differentiation at the

level of individual molecular profiles, such as the transcriptome or the proteome. To obtain a

more comprehensive view, we measured protein, mRNA and microRNA abundance during

retinoic acid-driven differentiation of mouse embryonic stem cells. We found that mRNA and

protein abundance are typically only weakly correlated across time. To understand this find-

ing, we developed a hierarchical dynamical model that allowed us to integrate all data sets.

This model was able to explain mRNA-protein discordance for most genes and identified

instances of potential microRNA-mediated regulation. Overexpression or depletion of micro-

RNAs identified by the model, followed by RNA sequencing and protein quantification, were

used to follow up on the predictions of the model. Overall, our study shows how multi-omics

integration by a dynamical model could be used to nominate candidate regulators.

Author summary

Pluripotent stem cells, which can be derived from an adult individual, can be grown indef-

initely in a dish and turned into each cell type of the body. These abilities enable applica-

tions of stem cells in basic research and regenerative medicine. Differentiation, the

conversion into a precisely defined cell type, typically requires complex protocols that

often have low efficiency. A better understanding of the molecular mechanisms underly-

ing differentiation could help us improve existing protocols. Here, we studied the differ-

entiation of embryonic stem cells induced by a small molecule (retinoic acid). We

measured the abundances of three important classes of biomolecules–micro RNAs, mes-

senger RNAs and proteins–at multiple time points during a 96 h-long differentiation
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experiment. We observed changes in the abundances of thousands of molecules. To make

sense of these measurements we developed a mathematical model that connects the differ-

ent classes of biomolecules and aims to predict their dynamics. Such models might help

us identify new opportuntities to control differentiation at the molecular level. The data

set we created, which we provide through an easily accessible web application, will also be

a useful resource for other researchers interested in stem cell biology.

Introduction

Much of the medical potential of pluripotent stem cells is due to their ability to differentiate

into all cell types of the adult body [1]. While tremendous progress has been made in guiding

cells through successive lineage decisions, the regulatory mechanisms underlying these deci-

sions often remain unknown, especially at the post-transcriptional level. This gap in knowl-

edge hampers the streamlining and acceleration of differentiation protocols.

A common first step towards finding novel gene regulatory relationships is the comprehen-

sive, ideally genome-wide, measurement of gene expression dynamics. A large body of work

has focused on charting transcriptome changes during differentiation, most recently down to

the single-cell level [2–6]. While highly informative, such studies usually make the implicit

assumption that mRNA levels are a good proxy for protein levels, despite widespread discor-

dance observed in several mammalian systems [7–9]. The relationship between mRNA and

protein abundance has been studied in various systems at different resolutions and time scales.

Originally, mRNA-protein correlation was assessed across the genome (“across-gene correla-

tion”[10]) in cell lines growing in steady state, where population-average abundances were

measured with bulk omics methods. In this context, initial estimates claimed that only 40% of

protein variability across the genome is explained by mRNA abundance in steady state [11].

Models of the protein to mRNA ratio explained up to two-thirds of the variability, when

sequence features—such as the length of the coding sequence or amino acid frequencies—

were taken into account [12]. Importantly, discordance between mRNA and protein abun-

dance does not immediately imply specific regulation, as technical noise tends to reduce the

observed correlation and conventional correction schemes typically ignore the effect of sys-

tematic, correlated errors [13]. In a comparison of relative protein levels across human tissues,

about 50% of the variance in protein abundance was ascribed to post-transcriptional regula-

tion [14]. All in all, a significant amount of protein abundance variability across the genome

seems to remain unexplained, even if the effect of technical noise is considered.

Bulk measurements in unperturbed, steady state conditions can only reveal across-gene

correlations. Single-cell methods or bulk measurements of dynamic systems, on the other

hand, reveal fluctuations across cells or time, respectively, which allows us to study mRNA-

protein correlation of individual genes (“within-gene correlation”[10]). The variability of

mRNA-protein ratios in single-cells was found to be influenced by various factors such as pro-

tein half-life [15], as well as phenotypic state or microenvironment [16]. Within-gene mRNA-

protein correlation can also be studied by measuring mRNA and protein abundances at the

population level across time in a highly dynamic system, such as differentiating stem cells.

For this study, we collected a bulk multi-omics data set of retinoic acid (RA)-driven differ-

entiation of mouse embryonic stem cells (mESCs). Samples taken over a period of 96 h were

subjected to: mass spectrometry, bulk RNA-sequencing of nuclear and cytoplasmic fractions,

as well as small RNA sequencing to quantify microRNA (miR) abundance. To describe protein

dynamics, we refined a birth-death model [17–22] by considering explicitly the cytoplasmic
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fraction of the mRNA and the influence of certain technical artefacts related to mass spectrom-

etry. In contrast to steady-state models, dynamical models aim to infer kinetic rates for protein

synthesis and degradation rather than explain absolute protein levels. Here, we show how such

models can in principle be used to nominate candidate regulators of gene expression during

stem cell differentiation. By assuming a specific effect of miRs on protein synthesis, we

attempted to identify miRs with a potential regulatory function. Finally, we used mimics and

inhibitors of several candidate miRs to follow up on the model’s predictions.

Results

Pervasive discordance between mRNA and protein in retinoic acid-driven

mESC differentiation

We used RA differentiation of mESCs as a generic model for in vitro differentiation. Previ-

ously, we characterized this differentiation assay in detail at the transcriptional level by single-

cell RNA-seq [2] and showed that RA exposure induces a bifurcation into extraembryonic

endoderm-like and ectoderm-like cells. Here, we collected RNA and protein samples during

an RA differentiation time course (Fig 1A). For each time point, we quantified poly(A) RNA

by RNA-seq and protein expression by tandem mass tag (TMT) labeling followed by tandem

mass spectrometry (MS/MS). In total, we obtained RNA and protein abundance estimates for

6271 genes (S1A–S1E Fig) at 8 time points in duplicate. After correction for batch effects due

to separate sequencing runs (S1F Fig), we achieved highly similar results for the two biological

replicates. To investigate in how far protein expression can be predicted from RNA expression,

we started with the simplest conceivable model (termed naive here), which assumes that pro-

tein abundance is connected to RNA expression by a constant, gene-dependent scaling factor.

This model is justified, if protein synthesis and degradation rates are constant and RNA

expression changes slowly on the time scale of protein turnover, thus resulting in a quasi-

steady state. Consequently, the protein-to-RNA ratio would be approximately constant over

time. To test this model, we scaled both protein and RNA to their respective means, which

should result in a constant protein-to-RNA ratio of 1, if the naive model is valid. We observed

that for a large fraction of genes, the naive model is inaccurate, resulting in low coefficients of

determination (R2) and low correlation (Figs 1B, 1C and S2A). In many cases, R2 assumes neg-

ative values, which means that the naive model performs worse than a model predicting a

scaled protein level of 1 for all time points. (Note that only for linear regression models R2 is

guaranteed to be positive and interpretable as the fraction of variance explained by the model.)

For some genes, we even observed significant anti-correlation between RNA and protein (Fig

1B). While technical noise certainly contributes to this result, the high quality of our data sets

(S1 Fig) suggests that a substantial part of the observed discordance is of biological origin. The

assumptions of the naive model are therefore likely wrong for the majority of genes and a

more sophisticated model is necessary to explain the relationship between RNA and protein.

A simple birth-death model explains mRNA-protein discordance for most

genes

To relax the assumption that expression is in steady state, we next considered a kinetic model

that implements a birth-death process for protein dynamics (Eq 1).

_PgðtÞ ¼ kg
s � R

gðtÞ � kg
d � P

gðtÞ with kg
s > 0; kg

d > 0 ð1Þ

In this total RNA model, protein production of gene g depends on total mRNA abundance

R and the protein synthesis rate ks, while protein degradation depends on protein abundance P
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Fig 1. Birth-death models outperform the naive model in predicting dynamics. (A) Schematic overview of RA

differentiation time course and subsequent omics measurements. (B) Example fit of the naive model. The naive model

is a smoothing spline fit of RNA scaled to match the mean protein expression. (C) R2 distribution of the naive model.

(D) Example fit of the total RNA (totRNA) model. (E) R2 distributions of the naïve and total RNA totRNA models. (F)

Example fit of the total RNA and cytoplasmic RNA model, replicate 1. (G) R2 distributions of the total RNA and

cytoplasmic RNA model. (H) Example fit of the cytoplasmic RNA and ci model, replicate 1. The height of the grey bar

indicates the fitted ci parameter. (I) R2 distributions of the cytoplasmic RNA and ci model. Only genes that are

improved by the ci model are shown. The distribution of all genes is shown in S2E Fig. (C,E,G,I) Some genes with

extremely low R2 values are set to the minimum value of the plot for clarity. Corresponding Pearson’s r distributions

are plotted in S2A–S2D Fig.

https://doi.org/10.1371/journal.pgen.1010744.g001
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and the degradation rate kd. Synthesis and degradation rate are taken to be constant in time

but gene-specific (as indicated by the index g). All processes related to protein production (ini-

tiation, elongation, etc.) are lumped into ks, while kd represents all processes leading to a

reduction in protein levels (dilution due to cell division, active degradation, etc.). Similar mod-

els have been used previously to describe protein dynamics during the stress response in yeast

[18], as well as embryonic development of Xenopus [19] and Drosophila [22]. We do not con-

sider simpler, degenerate models (without ks and/or kd [19]), because these models are not rel-

evant in our biological system: Synthesis and degradation always occur to some degree during

stem cell differentiation. To reduce the influence of uninformative small fluctuations, we

applied a smoothing spline to the abundance estimates prior to inferring model parameters by

non-linear least-squares fitting. Compared to the naive model, R2 and correlation improved

markedly for the total RNA model (Figs 1D, 1E and S2B), which is to be expected given the

increase in model flexibility. To correct for a difference in the number of fit parameters and

thus compare model performance fairly, we used the Bayesian information criterion (BIC, see

Methods). According to the BIC, 3551 out of 4580 proteins were better fit by the kinetic

model. These proteins are thus likely out of steady state, for the duration of the experiment, as

a result of the differentiation cue. In summary, these results showed that a simple birth-death

model outperforms the naive model of protein dynamics.

Despite the overall improvement observed with the total RNA model, R2 and correlation

were still low for many proteins. We hypothesized that the remaining discrepancies could be

explained by kinetic rates changing over time. To evaluate this hypothesis, we first sought to

exclude technical limitations of our measurements as possible alternative explanations. We

first considered the subcellular localization of mRNA. In our first experiment, we measured

total poly(A) RNA, whereas only cytoplasmic mRNA is available for translation. Nuclear

retention of mRNA is known to reduce transcriptional noise [23] and has been shown to con-

tribute to translational regulation for specific genes [24–26]. To measure the cytoplasmic

mRNA fraction of each gene, we repeated the differentiation experiment in triplicate and sepa-

rated cell lysates into a nuclear and a cytoplasmic fraction before performing RNA-seq. To

obtain a global scaling factor between cytoplasmic and nuclear expression, we regressed total

RNA (totRNA) reads, measured previously, on nuclear RNA (nuRNA) reads and cytoplasmic

RNA (cyRNA) reads across all genes (see Methods). Then, the cytoplasmic fraction C was cal-

culated for each gene and each time point. To our surprise, C did not vary substantially

between genes (mean = 0.82, std = 0.02, calculated for a subset of 3,563 genes without any

missing values) (S1G Fig). In addition, C also did not fluctuate much in time for individual

genes (S1H Fig). Despite the low variability of C, we incorporated this parameter, leading to

the cytoplasmic RNA model (Eq 2).

_PgðtÞ ¼ kg
s � C

gðtÞ � RgðtÞ � kg
d � P

gðtÞ

with 0 � CgðtÞ � 1 ð2Þ

As to be expected, adding C brought overall only a subtle improvement (Fig 1G), although

for individual cases, the improvement was significant (Fig 1F). We opted to fit further models

including the cytoplasmic fraction, due to the overall slightly better performance.

Another potential confounder is inherent to the proteomics method we employed. TMT-

based proteomics suffers from co-isolation interference (ci), a process in which two peptides

are co-isolated in the second MS step. The contaminating peptide can interfere with the quan-

tification of the peptide of interest and cause a constant offset [27,28]. To model a possible off-

set, we extended the model by an additional parameter (ci), quantifying the degree of fold-
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change compression for a protein. Thus, we assume ci to be constant for all TMT tags, i.e. time

points, resulting in the ci model (Eq 3).

_PgðtÞ þ cig ¼ kg
s � C

gðtÞ � RgðtÞ � kg
d � ðP

gðtÞ þ cigÞ

0 � cig � minfPgðtÞg ð3Þ

Effectively, including the parameter ci allows protein expression to have a bigger dynamic

range, which can improve the fit for certain genes significantly (Figs 1H, 1I, S2D and S2E).

Judged by the BIC, 557 genes were fit better including ci. All in all, this result reinforces the

importance of considering co-isolation interference.

Including miRs improves model performance and identifies miR-mRNA

interactions

Having incorporated important confounding factors, we sought to further extend the model

by relieving the assumption of constant kinetic rates. Such a model would be able to capture

protein synthesis and degradation varying across time, which likely happens during a process

as dynamic as stem cell differentiation. A model in which ks and kd are time-dependent and

completely arbitrary cannot be sufficiently constrained by our mRNA and protein measure-

ments. Hence, we decided to focus on a specific regulatory mechanism, for which an addi-

tional, complementary data set could be obtained. Specifically, we explored the influence of

miRs, which are known to be involved in gene regulation during differentiation [29]. In order

to study the role of miRs in our system, we repeated the RA differentiation assay and measured

the miRnome by small RNA-seq in quadruplicate. We quantified around 1000 mature miRs

per time point (S1A, S1C and S1E Fig). For further analysis, we retained miRs with high repro-

ducibility across replicates and high variance across time (S1I Fig). To identify possible effects

of miRs, we focused on computationally predicted miR target genes. We further reduced the

number of miR-mRNA interactions by filtering based on the “context score” provided by Tar-

getScanMouse [30] (S1D Fig). This score combines information from mutiple sequence fea-

tures and can be used to rank hits. In the end we retained 4527 genes, 560 unique mature miRs

and 45,882 potential interactions between them (S1D and S1E Fig).

If multiple miRs with similar temporal profiles targeted the same gene, we considered them

to be indistinguishable. Therefore, we grouped all miRs into six clusters by their temporal

expression profiles (Fig 2A) and averaged over miRs from the same cluster targeting the same

mRNA (Fig 2B). As miR binding is known to trigger translational repression [31], we modified

the term describing protein synthesis in our model. In the interest of parsimony, we assumed a

linear dependence of protein synthesis on miR abundance for this miR model (Eq 4).

_Pg
mðtÞ ¼ kg

s � ð1 � a
g
m �M

g
mðtÞÞ � C

gðtÞ � RgðtÞ � kg
d � P

gðtÞ

0 < ag
m � 1 ð4Þ

Here, Mg
m is the geometric mean abundance (scaled to its maximum across time) of miRs in

cluster m targeting gene g and αg
m parametrizes the interaction between those miRs and the target

gene g. For each gene, we fit a model with one of the six miR clusters at a time and identified the

improvement in model performance. Including miRs greatly improved the fits for some proteins,

especially when there was a transient discordance between RNA and protein expression (Fig 2B).

Typically, the "effective" mRNA abundance (cytoplasmic mRNA corrected for miR effects) was

more dynamic than nominal mRNA abundance. For many of the genes that benefited from the

addition of miRs, their influence is typically large: For these genes, translation was reduced up to
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50% by the miR term in the model at peak miR expression (Fig 2C). Overall, the addition of a

miR-dependent term significantly improved the coefficient of determination for a quarter of the

proteins as determined by the BIC (Fig 2D). At this point we would like to stress that we made

particular assumptions about the influence of miRs (miR binding only affects ks and the effect is

linear in the abundance etc.). A more general model would have been under-constrained by the

available data. Other conceivable interaction terms might result in improvements for different

sets of genes. A better performance of the miR model, compared to simpler models, therefore

does not prove the assumed regulatory mechanism.

The best dynamical model explains 45% of total protein variance

While each model refinement introduced above improved model performance overall, each

model achieved the lowest BIC only for a subset of genes (Fig 3A). In about 16% of cases the

Fig 2. The addition of miRs further improves the dynamical model for a subset of genes and suggests potential

miR-mRNA interactions. (A) Expression profiles of 560 miRs in six clusters. (B) Example fit of miR model for the

gene Rab8a, replicate 1. First panel: expression of the assigned miRs of a single cluster. Colored lines are individual

smoothing spline fits. Second panel: Cytoplasmic RNA expression and the effective RNA concentration available for

translation (see Methods). Solid lines represent smoothing splines. Third/fourth panel: cytoplasmic RNA and miR
model fits. (C) Distribution of inferred α for genes that benefit from miR model. (D) R2 distribution of the miR model

and the next best model (either naive, total RNA, cytoplasmic RNA or ci). Only genes that benefit from the miR model

are shown. Some genes with extremely low R2 values are set to the minimum value of the plot for clarity. The

corresponding Pearson’s r distribution is shown in S2F Fig.

https://doi.org/10.1371/journal.pgen.1010744.g002
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naive model was optimal, meaning that for these proteins none of the other models improved

prediction by a significant amount (as judged by the BIC). 25% and 26% of genes were best

predicted by the model without or with considering mRNA localization, respectively. Hence,

for 51% of genes, protein abundance seemed to be out of steady state, but explainable by a sim-

ple model with fixed synthesis and degradation rates. For 8% of proteins, the model including

co-isolation interference was optimal. The increased relative dynamic range due to subtracting

a constant increased the fit for these genes significantly. Finally, 25% of proteins were fit opti-

mally with a model including one of the miR clusters, indicating that there are likely additional

regulatory mechanisms at play, potentially mediated by miRs. If the optimal model for each

protein is chosen, only very few cases of negative R2 values remain (Fig 3B). Ignoring those, we

found that the miR model explained 45% of the variance, when it is the optimal model (Fig

3C). In summary, the dynamic responses of 84% of the quantified proteins were signfificantly

different from their mRNA counterparts. Therefore, it does not seem warranted to consider

mRNA abundance a good proxy for protein levels in a highly dynamic setting.

Follow-up on the model predictions using miR inhibitors and mimics

Given that the model including miRs was optimal for 25% of proteins, we wanted to explore in

how far our model is able to identify candidates for novel miR-mRNA interactions. To that

end, we ranked all proteins by model performance (R2) and performance improvement (i.e.

change in R2) compared to the simpler models without miRs (Fig 4A and S1 Table). Among

this list of candidate genes, we selected seven genes (Rab8a, Cdk7, Pccb, Acad8, Mfge8, Eif4h
and Srgap2) and their thirteen putative regulating miRs (Figs 2B, 4B and S3), for further inves-

tigation. To test the functional significance of those miRs, we set up a transfection assay with

miR mimics and inhibitors in mESCs. To optimize mimic and inhibitor transfection, we first

created two fluorescent reporter cell lines, based on a published approach [32,33] (S4A Fig). In

these cell lines, a bi-directional promoter drives the expression of two fluorescent proteins,

functioning as miR ‘reporter’ and ‘normalizer’, respectively. The bi-directional promoter guar-

antees highly correlated levels of transcription of both transcripts. Due to miR binding sites in

the ‘reporter’ transcript, its expression is reduced relative to the ‘normalizer’, if the respective

miR is present. We created reporter cell lines for a miR that is undetected in our system (mir-

590-3p) and one that is highly expressed (miR292a-5p), in order to evaluate a mimic and an

inhibitor, respectively. Flow cytometry measurements of the mir-590-3p reporter line trans-

fected with a mir-590-3p mimic revealed a high percentage of transfected and regulated cells

after 24 h (S4B Fig). Although the effect increased slightly over time, we picked 24 h as the

Fig 3. Selecting the optimal model on a gene-by-gene basis increases the total explained variance of protein expression from 30% to

50%. (A) Assignment of the optimal model for each gene based on the BIC. The number next to the miR bar indicates the miR cluster

giving the best fit. (B) R2 distribution of the optimal fits from (A) and their naive model counterpart. Some genes with extremely low R2

values are set to the minimum value of the plot for clarity. (C) Median percentage of protein variance explained by each model. For each

model, only those genes were included for which that model was the best. Fits with negative R2 were ignored.

https://doi.org/10.1371/journal.pgen.1010744.g003
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ideal time point for evaluation in order to limit the extent of secondary effects (S4C Fig). The

miR292a-5p inhibitor was slightly less effective in modulating miR292a-5p reporter signal,

even at higher doses (S4D Fig). For the miR inhibitor, we selected 48 h transfection with 2X

the suggested concentration (S4E Fig).

Having set up optimal concentrations and timings for our transfection assays, we next set

out to validate the predicted miR targets. Although our kinetic model was developed to predict

regulation at the level of translation, we used mRNA abundance as a first, convenient readout,

reasoning that mRNA degradation usually follows translational repression [31]. Cells were

transfected with miR mimics and inhibitors for the thirteen aforementioned miRs and one

additional miR as a control, for which we expected no effect (miR-216a-5p, which is predicted

Fig 4. RNA-seq of mESCs transfected with mimics or inhibitors of miRs identified by the model. (A) Scatter plot of the R2 values for the best miR model

and the best non-miR model, see Fig 2D. Colored dots are defined by the cutoffs indicated in red and represent a subset of genes with a miR-mRNA interaction

of higher confidence. Some genes with extremely low R2 values are set to the minimum value of the plot for clarity. (B) miR model fits of Acad8 and Eif4H,

which belong to the subset highlighted in (A). (C) Expression levels (regularized counts scaled to scrambled control) of Acad8 and Eif4H after miR mimic (top)

and miR inhibitor (bottom) transfection in 3 biological replicates. P-value shown is for an uncorrected one-sided test (see Methods). Differential expression of

six more target genes is shown in S5 Fig. (D) Expression fold changes relative to scrambled control after mimic and inhibitor transfections for three miRs that

target Acad8 and 2 miRs that target Eif4h. Distributions of the six more targets are shown in S6 Fig. The boxed genes are our proposed targets, additionally

some known targets are shown. Red color indicates significantly differentially expressed genes (Padj < = 0.01).

https://doi.org/10.1371/journal.pgen.1010744.g004
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to target Leo1). mRNA samples from these experiments were subjected to RNA-seq. Differen-

tial expression analysis revealed significant downregulation in four out of eight targeted genes

by at least one of the miR mimics (Figs 4C and S5A). Acad8 was downregulated by miR-433-

3p (P = 1.7e–3), Cdk7 was downregulated by miR-99a-5p (P = 0.014), Eif4h was downregulated

by both miR-152-3p (P = 0.015) and miR-467e-3p (P = 1.21e–19) and Srgap2 by miR-135b-3p.

The observed downregulation supported the hypothesis that miR-mRNA interaction takes

place in these five particular cases. The miR inhibitors on the other hand did not result in sig-

nificant differential expression in any of the predicted targets (Figs 4C and S5B Fig). The nega-

tive control Leo1 was not differentially expressed, as expected (S5 Fig). Overall, the mimics of

the thirteen miRs downregulated the predicted targets significantly in a combined analysis

(Pfisher = 2.4e-3). On the contrary, the inhibitors did not have a significant opposite effect

(Pfisher = 0.6), possibly due to a smaller change in miR abundance, compared to the mimics,

and redundancy created by multiple miRs targeting the same gene.

As additional validation of our assay we looked at the measured differential expression for

known targets of the perturbed miRs (Figs 4D and S6). Specifically, we focused on the miRs

predicted to regulate Acad8 and Eif4h, which gave the largest effect sizes at the mRNA level.

miR-23b-5p, which we predicted to target Acad8, is also known to target Hmgb2 [34] and

thereby play a role in cardiac hypertrophy. Another predicted regulator of Acad8 was miR-

433-3p, which regulates genes involved in development, like the transcription factor CREB
[35] and the Egfr binding adaptor protein GRB2 [36]. The third predicted regulator of Acad8,

miR-5615-3p, does not have any confirmed targets to the best of our knowledge. Eif4h was pre-

dicted to be regulated by miR-152-3p and miR-467e-3p the latter of which has no indepen-

dently validated targets. Some of miR-152-3p’s known targets are the two cell cycle genes

CDKN1B [37] and CDK8 [38], the pluripotency inducing KLF4 [39], and the DNA methyl-

transferase Dnmt1 [40]. With the exception of Hmgb2, all known targets were downregulated

in the respective mimic assays, indicating that our experiments can validate existing

interactions.

Finally, we wanted to test, whether some of the identified miR-mRNA interactions also

have an effect on protein abundance. We repeated the transfections with miR inhibitors and

mimics for miR433-3p (which targets Acad8), miR467e-5p (which targets Eif4h) and miR-99a-

5p (which targets Cdk7) in mESCs and measured protein abundance by immunofluorescence

and flow cytometry. For these experiments we used a 5X reagent concentration to increase the

expected effect size. In the case of ACAD8 and EIF4h, both miR mimic and inhibitor lead to

effects in the same direction, relative to the respective scrambled control (S7 Fig). For ACAD8,

both the mimic and the inhibitor caused an increase in protein abundance, while for EIF4H

both treatments caused a decrease in abundance. This observation can be explained by other

regulatory mechanisms that (over)compensate for the perturbations or secondary effects of the

selected miRs. For CDK7, miR-99a-5p inhibition resulted in a strong upregulation of protein

abundance, while the miR mimic slightly reduced abundance (Fig 5). This observation is con-

sistent with miR-99a-5p specifically targetting CDK7. As shown above, miR-99a-5p inhibition

did not significantly increase Cdk7 mRNA levels (S5B Fig), which means that regulation

occured at the level of translation.

All in all, the validation experiments showed that our model has the power to nominate

potential regulators of protein abundance.

Discussion

In this study we set out to integrate a multi-omics data set on stem cell differentiation. A range

of tools for the integration of multiple omics modalities, both at the bulk and single-cell cell
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level [41,42], already exist. The most recent approaches have started to aim for biologically

meaningful integration by incorporating prior knowledge in various ways. For example, bio-

logical knowledge can inform priors of Bayesian models or the topology of networks that rep-

resent interactions connecting different modalities [43,44]. A third way to exploit biological

relationships between data sets, which we adopted in this study, is the use of dynamical models

[17–22]. These models incorporate biophysical relationships between different types of mole-

cules in a quantitative way and can also be used to infer kinetic parameters that have obvious

biological interpretations17–22. We speculate that combinations of the mentioned approaches,

exemplified by physics or systems-biology informed neural networks [45,46], will become

powerful tools for data integration in the future.

In our time-resolved multi-omics data set we found overall low correlation between mRNA

and protein abundance across time. Such low correlation has been observed in several systems,

in particular: Xenopus development [19], C. elegans development [47], macrophage differentia-

tion [48], mouse ESC differentiation [49] and the intestinal epithelium [50]. While the lack of

strong correlation is typically interpreted as a sign of (post-)translational regulation [47,49],

theoretical work showed that a simple delay between mRNA and protein production can lead

to a reduction in gene-wise correlation [51,52]. A minimal model with constant kinetic rates

explained the protein dynamics of a third of all genes during the stress response in yeast [18]

and 75% of genes in Xenopus development [19]. In our system, 3552 out of 4580 genes were

explained better by this model, compared to a naive model which assumes a constant protein-

to-RNA ratio.

To explain the remaining discordance we explored the cytoplasmic fraction of the mRNA,

but did not find a strong effect. A possible explanation could be that the nuclear fractionation

method we used was not very effective and a substantial amount of cytoplasmic RNA remained

in the nuclear fraction. While the mean cytoplasmic fraction measured here (0.82) was compa-

rable to values reported in another study [23] of pancreatic beta cells (0.79) and liver cells

(0.87), we observed much lower variability between genes compared to that previous study.

This might either indicate that nuclear retention does not play a role in differentiation or that

the nuclear fractionation method was not optimal. Intriguingly, Halpern et al. have shown,

using single-cell methods and a dynamical model of mRNA turnover and nuclear export, that

nuclear retention can reduce the variability of cytoplasmic mRNA abundance [23]. Reduced

cytoplasmic noise likely leads to an increase in mRNA-protein correlation. It would be very

insightful to employ single-cell methods and test whether similar mechanims are at play in

stem cells and during differentiation. Whereas incorporating the cytoplasmic fraction only

resulted in a small improvement, a model that includes co-isolation interference was optimal

Fig 5. CDK7 protein abundance is regulated by miR-99a-5p in mESCs. Flow cytometry of CDK7 immunostaining

in 4 biological replicates of mESCs treated with miR-99a-5p mimic, inhibitor or the respective scrambled controls.

https://doi.org/10.1371/journal.pgen.1010744.g005
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for almost 400 proteins. This result is in agreement with the known, confounding influence of

co-isolation interference [27,28].

Overall, our analysis showed that for 16% of the proteins, the naive model is sufficient.

From the mRNA abundances alone it is, however, impossible to predict, which genes would

fall in this category. These results reinforce the notion that mRNA abundance should not be

used without caution as a proxy for protein abundance [53]. Future work might reveal predic-

tors (such as mRNA sequence composition, known binding motifs etc.) that might help to

identify the regulatory mode of a particular gene. It will be interesting to see how much of the

variance that remains unexplained by our most detailed model (55%) is due to technical noise

or unexplored biological factors (regulation of protein degradation, control of protein turn-

over by RNA binding proteins etc.)

Having defined a simple birth-death model that includes the confounding effect of co-isolation

interference, we next explored whether considering miRs could further improve model perfor-

mance. miRs have been identified as key regulators of stem cell pluripotency and differentiation

[29,54]. For example, members of the let-7 and miR-290 families have been implied as drivers of

differentiation as well as the maintenance of pluripotency in ESCs [54–57]. To find putative tar-

gets of miRs, various computational methods, typically based on sequence complementarity and

conservation, have been developed [30,58,59]. These methods predict hundreds of thousands of

interactions, among which are likely many false positives. The gold standard for validation, the

luciferase assay, is time-consuming, which means that the majority of potential interactions have

not been verified. More comprehensive, experimental methods to identify miR-mRNA interac-

tions, such as HITS-CLIP or PAR-CLIP employ crosslinking of the RNA-induced silencing com-

plex (RISC) with associated miRs and their targets, but they can suffer from low sensitivity and

require the use of reagents that might perturb cell physiology [60]. Our modeling-based approach

might complement these methods in several ways: No special reagents are necessary and miR-

mRNA interactions are identified by effect size, which might help to find functionally relevant

miRs. Our approach identified several candidate regulators and we were able to validate the

repression of CDK7 protein expression by miR-99a-5p. Future studies might reveal the functional

relevance of this interaction for the maintenace of pluripotency, differentiation or other aspects of

stem cell biology. Once more we would like to stress that the miR effect incorporated in our

model is an assumption. Our model is consistent with the finding that miRs tend to repress trans-

lation, next to promoting mRNA degradation [61]. Yet, due to the under-constrained nature of

the problem, a better fit of a model incorporating the assumed miR effect is not to be taken as evi-

dence that this effect is (exclusively) at play. Our follow-up experiments suggested the presence of

additional effects, not considered in our model, that significantly modulate the effect of miR inhi-

bition or overexpression. To demonstrate the postulated regulatory mechanism conclusively, pro-

tein translation would have to be measured directly, for example by ribosome profiling or pulse-

chase labeling and mass spectrometry [62].

In conclusion, our study demonstrates that biological relationships between datasets can be

leveraged for the integration of multi-omics experiments. Developing optimal integration

algorithms will be a continuing challenge as more and more types of molecular profiling data

become available. We hope that our time-resolved multi-omic dataset will be a rich resource

for the discovery of gene regulatory mechanism in stem cell differentiation.

Materials and methods

Experimental methods

Cell culture. E14 mouse embryonic stem cells were cultured as previously described [2].

Briefly, cells were grown in modified 2i medium [63]: DMEM/F12 (Life technologies)
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supplemented with 0.5x N2 supplement, 0.5x B27 supplement, 4mM L- glutamine (Gibco),

20 μg/ml human insulin (Sigma-Aldrich), 1x 100U/ml penicillin/streptomycin (Gibco), 1x

MEM Non-Essential Amino Acids (Gibco), 7 μl 2-Mercaptoethanol (Sigma-Aldrich), 1 μM

MEK inhibitor (PD0325901, Stemgent), 3 μM GSK3 inhibitor (CHIR99021, Stemgent), 1000

U/ml mouse LIF (ESGRO). Cells were passaged every other day with Accutase (Life technolo-

gies) and replated on gelatin coated tissue culture plates (Cellstar, Greiner bio-one). During

transfections, cells were temporarily cultured in serum+LIF medium (10% ES certified FBS,

1X non-essential amino acids, 0.1mM β-mercaptoethanol, 1X pen/strep, 2mM L-glutamine,

10,000U/ml mLIF, mLIF from Merck, rest from Thermo Fisher Scientific). miR reporter cell

line clone selection took place on homegrown mouse embryonic fibroblast feeders.

Retinoic acid differentiation and sample collection. Retinoic acid induced differentia-

tion was carried out exactly as described before [Semrau:2016fu]. Prior to differentiation cells

were grown in 2i medium for at least 2 passages. Cells were seeded at 2.5e5 per 10 cm dish and

grown over night (12 h). Cells were then washed twice with PBS and differentiated in basal

N2B27 medium (2i medium without the inhibitors, LIF and the additional insulin) supple-

mented with 0.25 μM all-trans retinoic acid (RA, Sigma-Aldrich). Spent medium was

exchanged with fresh medium after 48 h. To collect samples, cells were dissociated with Accu-

tase and spun down. Full RNA and cytoplastmic/nuclear RNA were always immediately

extracted (RNeasy, Qiagen and SurePrep, Fisher Scientific, resp.) and the purified RNA was

stored at -80C until RNA-sequencing was performed. For proteomics and miR-sequencing,

pellets were flash frozen in liquid nitrogen and stored at -80C until further processing.

Cloning. The miReporter backbone (AddGene, Plasmid #82478) was transformed into

DH5a competent cells (Cat. 18265017, Thermo Fisher Scientific) as per manufacturer’s

instructions. Then, transformed cells were expanded and plasmids harvested by miniprep

(Qiaprep, Qiagen). A set of two oligos was synthesized for each of the two reporter cell lines:

miR-590-3p-fwd: 5’-GATCG TAATTTTATGTATAAGCTAGT AAGCTTC-3’, miR-590-3p-

rev: 5’-CTAGGAAGCTT ACTAGCTTATACATAAAATTA C-3’, miR-292a-5p-fwd: 5’-

GATCG ACTCAAACTGGGGGCTCTTTTG AAGCTTC-3’, miR-292a-5p-rev: 5’-CTAG

GAAGCTT CAAAAGAGCCCCCAGTTTGAGT C-3’ (Integrated DNA Technologies, see

S4A Fig). Pairs of oligos were annealed and phosphorylated in a thermocycler: 30m at 37˚C,

5m at 95˚C, for 12 cycles (1μM fwd oligo, 1μM rev oligo, 1X T4 buffer, 1U/μl T4 Polynucleo-

tide Kinase; buffer and enzyme from New England Biolabs). Next, backbone digestion and

ligation was performed in one step in a thermocycler, which was facilitated by the ligated

inserts destroying the restriction sites for the enzymes (S4A Fig): 5m at 37˚C, 5m at 23˚C, for

12 cycles (1:2500 dilution of phosphorylated oligo duplex, 2.5ng/μl backbone, 5% v/v DTT,

0.15U/μl BamHI, 0.5U/μl NheI, 1U/μl T4 ligase, 1X restriction buffer; T4 from New England

Biolabs, rest from Thermo Fisher Scientific). Plasmids were then amplified in the same manner

as the backbone: Plasmids were transformed into DH5a cells, which were then expanded and

used for midiprep extraction (Plasmid Midi, Qiagen).

miReporter cell line creation. miReporter-590-3p and miReporter-292a-5p plasmids

were transfected into ESCs with lipofectamine 3000 (Thermo Fisher Scientific) as per manu-

facturer’s instruction. Briefly, 125μl DMEM (Sigma-Aldrich) was mixed with 5μl lipofectamine

3000 and vortexed briefly. Separately 125μl DMEM was mixed with 5μl p3000 reagent and 5μg

of plasmid and also briefly vortexed. Both mixtures were combined and incubated at room

temperature for 5 minutes to create DNA-lipid complexes. 2i medium was removed from pre-

seeded ESCs at a confluency of about 70–90% and replaced with serum+LIF medium. DNA-

lipid complexes were added to the medium for 24 h. Medium was then aspirated, cells washed

twice with PBS, and cells were left to grow for two days in 2i. Transfected cells were selected by

hygromycin (100 μg/ml in 2i) for three days. Single clones were selected differently for the two
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miReporter cell lines. Double-positive, single cells of the miReporter-590-3p cell line were

sorted by fluorescence-activated cell sorting in 96-well feeder-coated plates and expanded

thereafter. miReporter-292a-5p cells were sparse after passage and single colonies with double-

positive cells were picked by hand using a benchtop microscope and a 200μl pipette. Double

positive colonies were left to expand on feeders in 48-well plates. Clones were grown for at

least two passages to ascertain the stability of the transfection. Reporter activity was confirmed

by flow cytometry.

miR mimic and inhibitor transfection. Pre-miR miRNA Precursors (Thermo Fisher Sci-

entific) were used as miR mimics. These double stranded RNAs are designed to be processed

by the cell to result in mature miRs. miRCURY LNA miRNA Power Inhibitor (Qiagen) was

used for miR inhibition. This reagent blocks miRs by complementary binding to the mature

miR with high affinity (due to the presence of LNA bases). mESCs and both miReporter cell

lines were transfected with miR mimic and inhibitors in identical fashion. See S2 Table for a

list of all miR reagents. Cells were seeded in 2i medium 48 h prior to transfection in 12-well

plates. Half an hour before transfection, the culture medium was replaced by 500 μl of 2i

medium supplemented with 10% FBS to allow the cells to flatten. Lipid complexes (Lipofecta-

mine RNAiMax, Thermo Fisher Scientific) were prepared at the ratios recommended by the

manufacturer but siRNA was replaced with either miR mimic or miR inhibitor. miR inhibitor,

pre-miR or negative control stock (10 mM), were mixed with 3 μl of Lipofectamine RNAiMax

solution and KO DMEM medium to a total volume of 75 μL. We considered 100 nM of

mimic/inhibitor in this mixture a 1X concentration. The obtained transfection mix was incu-

bated for 5 min at RT before being added to the cell medium. After 24h (or 48h for the 2X

inhibitor experiments on the miReporter cells), the transfected cells were collected and fixed

in 4% PFA for 15 min at 4˚C. See also section ‘flow cytometry’.

RNA and miR sequencing. RNA sequencing libraries were prepared using Illumina’s

TruSeq stranded mRNA sample preparation kit. The stranded single end libraries were

sequenced on an Illumina HiSeq with 40bp reads and average read depth of 40 million reads

per sample. Paired-end libraries for RNA sequencing were sequenced on an Illumina NextSeq

500 with 150bp read length per strand and a read depth of 10 million reads per sample. miRs

were extracted from frozen pellets using miRNeasy (Qiagen) kit. Libraries for small RNA

sequencing (miR sequencing) were prepared using NEBNext Small RNA Library Prep Set for

Illumina (New England Biolabs) and were sequenced on an Illumina NovaSeq 600 with 150bp

paired-end reads and read depth between 4 to 15 million per sample. All sequencing data is

available through GEO.

Mass spectrometry. Pelleted cells were lysed in 400 μl RIPA buffer, except for the sorted

cells. Volumes of cell lysate corresponding to 100 μg protein per sample were digested with

trypsin using a modified FASP protocol [64]. Subsequently each sample was labeled with TMT

10-plex, 6-plex or 11-plex reagent (Thermo Fisher)) according to the manufacturer’s protocol.

All labeled samples were combined into a set-sample. Which labels were assigned to each sam-

ple is specified in the specification table. The labeled set-sample was fractionated by electro-

static repulsion-hydrophilic interaction chromatography (ERLIC) run on an HPLC 1200

Agilent system using PolyWAX LP column (200x2.1 mm, 5 μM, 30nm, PolyLC Inc, Columbia,

MD) and a fraction collector (Agilent Technologies, Santa Clara, CA). Set-samples were frac-

tionated into a total of 40 ERLIC fractions. Each ERLIC fraction was subsequently further sep-

arated by online nano-LC and submitted for tandem mass spectrometry analysis to both LTQ

OrbitrapElite or Q exactive high field (HF). One third of each fraction was injected from an

auto-sampler into the trapping column (75 um column ID, 5 cm length packed with 5 um

beads with 20 nm pores, from Michrom Bioresources, Inc.) and washed for 15 min; the sample

was eluted to analytic column with a gradient from 2 to 32% of buffer B (0.1% formic acid in
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ACN) over 180 min gradient and fed into LTQ OrbitrapElite or Q exactive HF. The instru-

ments were set to run in TOP 20 MS/MS mode method with dynamic exclusion. After MS1

scan in Orbitrap with 60K resolving power, each ion was submitted to an HCD MS/MS with

60K resolving power and to CID MS/MS scan subsequently. All quantification data were

derived from HCD spectra.

Flow cytometry. Cells were harvested for flow cytometry by washing with PBS and disso-

ciation using Accutase (Sigma-Aldrich). Detached cells were washed and resuspended in 2i.

Cells were fixed in 4% paraformaldehyde in medium (Cat. 43368, Alfa Aesar) for 15 min at

room temperature. Cells were then centrifuged and the supernatant was removed. In the case

of immunostaining, the cells were permeabilized in 1X PBS supplemented with 0.3% Triton X-

100 and 1% BSA for 1h at RT and immunostained for CDK7, ACAD8, or EIF4H respectively.

Cells were resuspended in 1% BSA (Cat. A2153, Sigma-Aldrich) in PBS and stored at 4˚C until

the measurement. The fixed cells were measured on a BD LSRFortessa X-20 or LSRII. For the

miReporter lines, forward and side scatter were measured as well as Citrine fluorescence

(488nm laser, 530/30nm emission filter) and mCherry fluorescence (561nm laser, 610/20

emission filter). For the immunostaining experiments, antibody fluoresccence was using

appropriate filter sets.

Computational methods

RNA-seq data pre-processing. Genome assembly mm10 release 93 from Ensembl was

used for alignment. First, an RSEM (v1.3.1) reference was created with default settings.

Adapter and quality trimming was performed with Trimmomatic (v0.38). Finally all reads

were aligned with STAR (v2.6.1a) with the option for stranded libraries enabled. Expected

counts from RSEM were used as input for DESeq2 (v1.26) to obtain regularized log2 counts

with stabilized variance to make comparisons between samples more reliable. From these val-

ues regularized counts were obtained and used for all further analyses and as input for batch

correction. For the miR transfection samples, genes were required to have expression counts

larger than 20. Additionally, sample 3 of the miR-100p-5p mimic was excluded due to low

complexity. DESeq2 was used to identify differentially expressed genes and obtain log2 fold-

changes. For the mimic experiments, 20 genes were differentially expressed between the

scrambled control and no treatment control: Ankmy2, B230219D22Rik, Col26a1, Cyld, Elmo3,

Fam98b, Gm9008, Med19, Mipol1, Mmachc, Pptc7, Psat1, Rap1b, Rdh13, Rfc4, Serp1, Snx6,

Srgap3, Tjp2 and Tmem132a (FDR = 0.10). These 20 genes were excluded from all other com-

parisons. No genes were differentially expressed for the inhibitor transfections.

Combining P-values. To combine p-values we used Fisher’s method which makes use of

T ¼ � 2
Pk

i¼1
lnðpiÞ � X2

2k where pi are the probabilities, k is the number of tests and T is chi-

square distrubuted with 2k degrees of freedom.

Proteomics data pre-processing. Peptide search was performed on peptides identified in

full RNA-seq data to increase specificity of the protein quantification with MaxQuant. Proteins

were quantified from the peptide measurements in the evidence.txt outputs. Reversed peptides

and contaminants were removed. Each column in the file was then normalized to the mean.

Some peptides for some samples were quantified multiple times, due to multiple mass-spec-

trometry runs or multiple TMT tags in the same sample mix. These values were averaged. Mul-

tiple peptides assigned to a single ensembl gene ID were also averaged to obtain normalized

protein expression, which was used for batch correction.

RNA-seq and proteomics batch correction. Global expression differences in protein and

RNA expression between replicates were corrected using the RemoveBatchEffect function

from limma (v3.42.2). The function was applied to the protein and totalRNA datasets
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separately for three batches: the first replicate, the second replicate and two samples that

replaced failed samples of the first replicate. The resulting batch-corrected values were used as

input for further analysis.

miR-seq data pre-processing. For alignment of miR-seq data we used the same genome

release as above with miRnome release 22.1 from miRBase using the mature miR sequences.

To prepare the reads we performed adapter and quality trimming with Trimmomatic and

obtained a consensus forward sequence using both the forward and reverse read and PEAR

(v0.9.6). We next ran bowtie-prepare from bowtie (v1.0.0–1). Finally we quantified each sam-

ple with the mapper.pl and quantifier.pl scripts from mirdeep2 (v2.0.1.2). The obtained counts

were processed the same way as the RNA-seq data, but separately.

Flow cytometry data analysis. Live cell gating and all other analysis of the flow cytometry

data was achieved using custom R scripts (FlowCore v1.52.1 [65]). To determine relative

down- or upregulation of Citrine expression in the miReporter lines, we calculated the ratio

Citrine/mCherry for each cell in the mimic/inhibitor assays and scrambled controls. For the

mimic experiments, miReporter downregulation was considered succesfully if the Citrine/

mCherry ratio was lower than the 1st percentile of of the signal in miReporter cells transfected

with the scrambled control mimic. For the inhibition experiments, miReporter upregulation

was considered succesfully if the Citrine/mCherry ratio was higher than the 99th percentile of

of the signal in miReporter cells transfected with the scrambled control mimic.

Identification of putative miR-mRNA interactions. Putative miR-mRNA interactions

were identified with TargetScanMouse release 7.1. The "miR family" table was filtered for

expressed miRs and expressed RNAs. Next, all interactions with a cumweightscore lower than

-0.3 were filtered out. Finally, to keep only miRs with high dynamics over the time course and

high reproducibility the Coefficient of variation (CV) across the mean miR expression of each

time point and the mean of the CV’s across the biological replicates was calculated for each

miR. A gaussian mixture model was fit to these to values using mclust (v5.4.6), where each dis-

tribution has an equal diagonal shape, but with varying volumes ("VEE" modelNames option).

Only miR-mRNA interactions from cluster 1 were used because they fit our criteria for high

variance and high reproducibility (S1I Fig). The final putative list of miR-mRNA interactions

comprised 560 miRs and was used in the miR clustering and model fit (see below).

miR clustering. To cluster miRs into sets of similar temporal profiles, miR expression was

first averaged per time point. A miR to miR distance matrix was created with 1–Pearson corre-

lation on log2-transformed values as the distance. This matrix was then used to perform hierar-

chical clustering with complete linkage (base R) and the resulting dendrogram was cut into 6

clusters.

Calculation of the cytoplasmic fraction (C-fraction). To obtain a per-gene cytoplasmic

fraction a global scaling factor between cytoplasmic and nuclear sequencing reads had to be

determined due to input normalization at the library preparation step. For this procedure,

genes that had any raw count lower than 10 in any of the samples were removed. Then, the top

500 genes with the lowest variance were fit with the following linear model:

Rtot ¼ bc � Rc þ bn � Rn, where Rtot is total RNA, Rc is cytoplasmic RNA and Rn is nuclear RNA.

For each RNA sample regularized log2 counts were used. The beta parameters that map cyto-

plasmic and nuclear values to total RNA values were 0.815 and 0.183 respectively. For each

gene g the C-fraction was then calculated by:

Cg ¼
bc � Rg

c

bc � R
g
c þ bn � R

g
n
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Rate model fitting. Several rate models were fit for every gene for which data from each

measurment modality was available (S1E Fig). RNA and protein expression were scaled by

dividing each by the average expression across time. Next a smoothing spline (smooth.spline

function, base R) was applied to the total RNA data for each replicate with 7 degrees of free-

dom (DF). DF was fixed because the automatic inferrence of DF by smooth.spline sometimes

sometimes lead to the oversimplification of RNA dynamics and thereby bad fits at the protein

level if the protein had more dynamics than the resulting spline. Therefore, a fit was deemed

more conservative, if high dynamics were forced at the RNA level at the cost of introducing

some noise. smooth.spline was used determine the DF for all other smoothing spline fits using

leave-one-out-cross-validation. Smoothing splines fit to the C-fraction were multiplied with

the smooth total RNA to get smooth cytoplasmic RNA. miRs that were assigned to each gene

were first averaged over replicates and then divided by the miRs maximum value. Smoothing

splines were fit to each miR and the smooth miR profiles for each miR cluster were averaged.

The differential equations were solved using deSolve (v1.28), given a rate model, parameters,

total cytoplasmic RNA and a miR cluster. Instead of using ks and kd directly as parameters,

log2(kprod) and log2(kdiv), with kprod = ks � kd and kdiv = ks/kd, were used as parameters to

increase the robustness of the optimization. An additional fit parameter not mentioned in the

main text was, P0, the protein concentration at t = 0 h, which was used to allow for measure-

ment error on the protein abundance. The parameter ci was constrained to be between 0 and

the minimal observed protein expression, as co-isolation interference cannot exceed the mea-

sured values. α was constrained to be between 0 and 1. Since both α and miR expression scaled

to the maximum across time cannot exceed 1, translation can only be completely repressed at

peak miR cluster expression. Optimal parameters were found using the optim function (base

R). Sum of squared residuals (SSR) were minimized using the "L-BFGS-B" method of the

optim function. For the models described by Eqs 2 and 3, there was an initial optimization

step minimizing SSR + 10 � log2(kdiv) � 2. Due to the scaling of RNA and protein, log2(kdiv) is

expected to be close to 0 so we penalized any divergence from the expected value to get a better

estimate for log2(kprod) first,. Without the initial regularization, the fits sometimes resulted in

extreme parameter values. The resulting parameters were used as initial values for the final

unpenalized fits. The Bayesian Information Criterion (BIC) was used to compare models with

different numbers of parameters: BIC = k � ln(n)– 2 � SLL, where k is the number of parame-

ters, n is the number of samples, and SLL the sum of log-likelihood. k is 0 for the naive model,

3 for Eqs 1 and 4 for Eqs 2 and 3. n = 8, the number of time points. The error of the fits was

assumed to be normally distributed in order to calculate the SLL. When comparing models,

the model with the lower BIC was considered superior.

Supporting information

S1 Fig. Quality control of full, cytoplasmic and nuclear RNA-seq; miRNA sequencing and

proteomics. (A) Total number of reads for all sequencing samples. (B) Distribution of the

number of peptides used for the quantification of each protein. (C) Number of detected genes

or miRs in each sample. Individual replicates are plotted as separate bars in (A, C). (D) Distri-

bution of miR-mRNA interactions per gene. (E) Euler diagram of all gene sets. The "miRNA"

set indicates genes with predicted miR interaction and the "clean" set is a subset of genes with-

out missing values in either RNA or protein. 53 genes are in the set RNA&Protein&Clean (no

miR-mRNA interactions), 13 genes are in the set RNA&Protein (no miR-mRNA interactions,

and some genes have missing values). (F) Correlation of temporal mRNA or protein profiles

between the two replicates. Shown are distributions of Pearson’s r across all measured mRNAs

or proteins. Batch correction improves the correlation between replicates for the mRNAs. (G)
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Distribution of the mean cytoplasmic fraction (C-fraction) per gene. (H) Coefficient of varia-

tion of C-fraction per gene. (I) Gaussian mixture model based clustering of miRs to select a

cluster with high reproducibility across replicates and high variance across time (cluster 1), see

Methods.

(TIF)

S2 Fig. Model performance comparison with Pearson’s r. (A-D) Pearson’s r distribution of

various kinetic models. Corresponding R2 distributions are shown in Fig 1. (E) R2 distribu-

tions of the cytoplasmic RNA and ci model for all genes. The R2 distribution of the subset of

genes that are best fit by the ci model is shown in Fig 1I. (F) Pearson’s r distribution of the miR
model and the next best model (either naive, total RNA, cytoplasmic RNA or ci). Only genes

that are best fit by the miR model are shown. Corresponding R2 distributions are plotted in Fig

2D.

(TIF)

S3 Fig. Candidate miR-mRNA interactions for six genes. Example fit of the miR model for

genes Cdk7, Pccb, Acad8, Mfge8, Eif4h and Srgap2 (rows). First column: expression of the

assigned miRs of a single cluster. Colored lines are individual smoothing spline fits. Second

column: Cytoplasmic RNA expression and the effective RNA concentration available for trans-

lation (see Methods). Solid lines represent smoothing splines. Third/fourth column: cyRNA

and miR model fits.

(TIF)

S4 Fig. Dose and timing for miR mimic and inhibitor transfection experiments can be

obtained using fluorescent reporters of miR activity. (A) miReporter plasmid, inserts and

digestion sites (BamHI and NheI). The insert overhangs are compatible with BamHI and

NheI, but block redigestion. See Methods for full cloning strategy. (B) Inhibition of the miR-

590-3p reporter transcript by the miR-590-3p mimic for seven time points as measured by

flow cytometry. The asterisk indicates the optimal transfection timing shown in D (24h). (C)

Fluorescence signal of miR-590-3p reporter for miR-590-3p mimic or scrambled control at

optimal transfection conditions. Blue line indicates 1st percentile of reporter/normalizer ratio

of the scrambled control. (D) Reduction of inhibition of the miR-292a-5p reporter transcript

by the miR-292a-5p inhibitor for three time points at three transfection concentrations as

measured by flow cytometry. The asterisk indicates the optimal transfection timing shown in

E (2days, 2X). (E) Fluorescence signal of miR-292a-5p reporter for miR-292a-5p inhibitor or

scrambled control at optimal transfection conditions. Blue line indicates 99th percentile of

reporter/normalizer ratio of the scrambled control.

(TIF)

S5 Fig. Differential expression of predicted targets after miR mimic and miR inhibitor

transfection. (AB) Expression levels (regularized counts scaled to scrambled control) of Cdk7,

Leo1, Mfge8, Pccb, Rab8a, and Srgap2 after miR mimic (A) and miR inhibitor (B) transfection.

P-value shown is for an uncorrected one-sided test (see Methods). Differential expression of

two more targets is shown in Fig 4C. Note that Leo1 was not predicted to be regulated by miR-

216a-5p and is included as a negative control.

(TIF)

S6 Fig. miR mimic and miR inhibitor versus control fold change distributions. Expression

fold changes relative to scrambled control after nine different miR mimic and inhibitor trans-

fections separately for six of our proposed targets. The boxed genes are our proposed targets.

Red color indicates significantly differentially expressed genes (Padj < = 0.01). Note that Leo1
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was not predicted to be regulated by miR-216a-5p and is included as a negative control.

(TIF)

S7 Fig. miR mimics and inhibitors cause effects in the same direction on ACAD8 and

EIF4H protein abundance. Flow cytometry of ACAD8 and EIF4H immunostaining in 3 bio-

logical replicates of mESCs treated with miR-433-3p or miR-467e-5p mimics, inhibitors or the

respective scrambled controls.

(TIF)

S1 Table. List of candidate interactions.

(XLSX)

S2 Table. List of miR reagents.

(XLSX)

S3 Table. List of RNA-seq samples.

(XLSX)
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