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Mass spectrometry (MS) methods can achieve deep pro-
teome coverage1,2, low missing data3, high throughput4,5 
and high sensitivity6. However, simultaneously achieving 

all these objectives is a considerable challenge7,8. Resolving this chal-
lenge will empower biomedical projects that are impractical with 
current methods8, especially those that require single-cell protein 
analysis9–11. Toward this goal, the throughput of sensitive protein 
analysis may be increased by different strategies: (1) increasing 
sample throughput and robustness by chemical labeling and (2) 
decreasing MS analysis time per sample by simultaneous (parallel) 
analysis of multiple peptides. These strategies are complementary, 
and we sought to combine them to achieve a multiplicative increase 
in the rate of quantifying the proteomes of limited sample amounts.

Chemical labeling is often used with data-dependent acquisition 
(DDA) to increase throughput via parallel sample analysis (Fig. 1a) 
and to control for shared artifacts, such as disturbances in peptide 
separation and ionization12–14. Because quantifying a mammalian 
proteome requires analyzing hundreds of thousands of precursor 
ions, and DDA methods analyze one precursor per MS2 scan, even 
the most optimized DDA methods require up to 1 day of liquid 
chromatography with tandem mass spectrometry (LC–MS/MS) 
for deep proteome analysis1. Non-isobaric labels, such as mTRAQ 
and dimethyl labeling, allow for sample multiplexing but further 
increase the number of precursor ions and, thus, the time needed 
for MS1-multiplexed DDA analysis15. In contrast, approaches using 
isobaric labels (such as tandem mass tags (TMTs)) do not increase 
the number of distinguishable precursor ions and can reduce the 
analysis time per sample16,17, albeit quantification with TMT is often 
affected by co-isolation interference13,18.

The throughput of DDA analysis can be increased by decreasing 
the ion accumulation times for MS2 scans, although this results 
in accumulating fewer ions and, thus, limits sensitivity7. Indeed, 
sensitive analysis of small sample amounts requires (and is, thus, 
limited by) long ion accumulation times, which are typically  

substantially longer than the detection time required by MS detec-
tors6,19,20. Even with short ion accumulation times for unlimited 
sample amounts, the requirement to serially analyze hundreds of 
thousands of precursor ions remains a major challenge for simul-
taneously achieving high throughput and deep proteome coverage 
by serial precursor analysis.

A fundamental solution to this challenge is the concept of iso-
lating and analyzing multiple precursor ions simultaneously by 
data-independent acquisition (DIA)21. This concept has been imple-
mented into methods for label-free DIA (LF-DIA) protein analy-
sis22–26. Such parallel analysis of peptides decreases the time needed 
to analyze thousands of precursor ions and makes the throughput 
of optimized LF-DIA and TMT-DDA workflows similar (Fig. 1a), 
allowing routine quantification of about 6,000 proteins in 2 hours17. 
Recent DIA technologies further enabled quantification of over 
8,000 proteins in 1.5 hours27, and TMTpro tags increased multi-
plexing to 18-plex for DDA methods4. Thus, multiplexed DDA and 
LF-DIA afford similar throughput (Fig. 1a).

We sought to further increase the throughput of sensitive DIA by 
multiplexing samples labeled with non-isobaric isotopologous mass 
tags, capitalizing on the fact that increasing the number of precursor 
ions does not increase the time needed to analyze them via tandem 
DIA-MS, in contrast to DDA-MS15,21. This creates a hypothetical 
possibility that we sought to test: the number of proteins accu-
rately quantified by multiplexed DIA may increase multiplicatively 
with the number of labels used (Fig. 1a). If feasible, this possibil-
ity may enable higher throughput and more sensitive multiplexed 
proteomics, including single-cell proteomics, as previously sug-
gested7,28. Although the feasibility of DIA multiplexed by SILAC29 
or pulsed SILAC30,31 has been clearly demonstrated, its ability to 
multiplicatively increase quantitative data points remains unclear. 
Similarly, clever strategies have used both isobaric and isotopolo-
gous tags to multiplex DIA, but they have afforded the quantifica-
tion of relatively few proteins32–34. Thus, the potential of multiplexed 
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DIA to increase sample throughput while preserving proteome cov-
erage and quantification accuracy has not been realized due to the 
increased complexity of DIA data from labeled samples33–37.

We hypothesized that an optimized experimental and analytical 
framework may enable n-fold multiplexed DIA to increase n-fold 
the number of accurate protein data points (Fig. 1a). We test this 
hypothesis for n = 3 using amine-reactive non-isobaric isotopolo-
gous mass tags (mTRAQ), hoping that this particular choice of mass 
tags can establish a framework that will, in the future, generalize to a 
variety of isotopologous non-isobaric mass tags with higher capac-
ity for multiplexing. Specifically, we sought to develop a general 
framework and an analysis pipeline to increase the throughput of 
sensitive and quantitative protein analysis via plexDIA.

Results
To enhance MS data interpretation, the plexDIA module of 
DIA-NN capitalizes on the expected regular patterns in the data, 
such as identical retention times and known mass shifts between the 
same peptide labeled with different isotopologous mass tags (Fig. 1b 
and Extended Data Fig. 1)7. DIA-NN uses neural networks to con-
fidently identify labeled peptides, and these identifications are then 

used to re-extract data for the same peptide labeled with a different 
tag. Neural networks then calculate false discovery rates (FDRs) for 
all peptides based on a decoy channel strategy, which is empirically 
validated by two-species spiked experiment shown in Extended 
Data Fig. 2. Despite the n-fold increased spectral complexity, the 
plexDIA framework aims to accurately quantify peptides by calcu-
lating ratios of fragments from the most confident isotopologous 
precursor to the translated isotopologous precursors at the apex 
where the signal is greatest and the effect of interference is lowest. 
The mean fragment ratio is used to scale the precursor quantity of 
the best isotopologous precursor to the less-confident isotopolo-
gous precursors (Fig. 1b).

plexDIA benchmarks. We sought to evaluate whether plexDIA 
can multiplicatively increase the number of quantitative data points 
relative to matched LF-DIA analysis while maintaining similar 
quantitative accuracy. Toward that goal, we mixed proteomes in 
precisely specified ratios shown in Fig. 1c, thus creating a bench-
mark of known protein ratios for thousands of proteins spanning 
a wide dynamic range of abundances, similar to previous bench-
marks23. Specifically, we made three samples (A, B and C), each 
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with an exactly specified amount of Escherichia coli, Saccharomyces 
cerevisiae and Homo sapiens (U-937 and Jurkat) cell lysate (Fig. 1c). 
A distinct aspect of this design is the incorporation of human pro-
teomes of different cell types, which affords additional benchmark-
ing for the reproducibility of protein identification across diverse 
samples and for relative protein quantification.

Each sample was either analyzed by LF-DIA or labeled with one 
of three amine-reactive isotopologous chemical labels (mTRAQ: 
Δ0, Δ4 or Δ8) (Fig. 1c). With this experimental design, plex-
DIA enables threefold reduction in LC–MS/MS time per sample  
(Fig. 1d). The combined labeled samples were analyzed by plexDIA, 
and the result was used to benchmark proteomic coverage, quanti-
tative accuracy, precision and repeatability across runs relative to 
LF-DIA of the same samples. LF-DIA and plexDIA were evaluated 
with two data acquisition methods, V1 and V2, shown in Fig. 1e. V1 
included multiple high-resolution MS1 survey scans to increase the 
temporal resolution of precursor sampling, as previously reported3, 
whereas V2 included more MS2 scans to increase proteome coverage  
(Fig. 1e). The only difference between the duty cycles of LF-DIA 
and plexDIA was a 100-m/z increment in the MS1 and MS2 win-
dows of plexDIA to account for the mass of mTRAQ added to the 
peptides (Methods).

plexDIA increases throughput multiplicatively. To directly 
benchmark the analysis of 500-ng protein samples by plexDIA rela-
tive to LF-DIA, the multiplexed and LF samples described in Fig. 1c  
were analyzed in triplicate by LC–MS/MS on a Q Exactive orbi-
trap (first generation, Thermo Fisher Scientific) with a 60-minute 
active nano-LC gradient. The throughput increases for duty cycles 
V1 (Fig. 2) and V2 (Extended Data Fig. 3) were similar, except that 
V2 achieved greater proteome coverage with both plexDIA and 
LF-DIA. The parallel data acquisition by all DIA methods resulted 
in a greater number of identified peptides and proteins compared to 
the DDA runs (Fig. 2a,b). Both V1 and V2 resulted in approximately 
2.5-fold more precursors and protein data points for plexDIA than 
for LF-DIA per unit time (Fig. 2a,b and Extended Data Fig. 3a,b).

plexDIA increases data completeness across samples. Next, we 
sought to compare LF-DIA and plexDIA in terms of the consistency 
of protein quantification across samples. The systematic acquisition 
of ions by DIA is well-established as a strategy for increasing the 
repeatability of peptide identification relative to shotgun DDA24. In 
addition to consistent data acquisition, plexDIA may further reduce 
the variability between samples and runs and, thus, further increase 
the consistency (overlap) between quantified proteins relative  
to LF-DIA.

Indeed, both SILAC and isobaric labeling reduce missing data 
by enabling the quantification of peptides identified in at least one 
sample from a labeled set18,38. Similarly, plexDIA takes advantage 
of the precisely known mass shifts in the mass spectra for a pep-
tide labeled with different tags to propagate peptide sequence identi-
fications within a run. Specifically, confidently identified precursors 
in one channel (label) are matched to corresponding precursors in 
the other channels. This is the default analysis used with standards 
A, B and C. plexDIA has an additional mode for the special case 
when some proteins are present only in some samples of labeled 
sets. In such cases, plexDIA can enable sample-specific identifica-
tion for each protein by using multiple MS1-based and MS2-based 
features to rigorously evaluate the spectral matches within a run and 
explicitly assign confidence for the presence of each protein in each 
sample. Such a special case is exemplified by a plexDIA set in which 
one sample has both yeast and bacterial proteins, whereas another 
sample has only yeast proteins (Extended Data Fig. 2). These  
analytical capabilities are described in the Methods.

To assess whether plexDIA can improve data completeness, the 
protein groups quantified across samples A, B and C were plotted as 

Venn diagrams for each replicate of plexDIA and LF-DIA (Fig. 2c). 
On average, the protein groups quantified in common across sam-
ples A, B and C were 6,282 for plexDIA and 5,851 for LF-DIA. The 
corresponding numbers for the V2 method are 7,923 for plexDIA 
and 8,318 for LF-DIA (Extended Data Fig. 3c). Thus, a three-plex 
plexDIA increased the rate of quantifying protein ratios across all 
three samples by 3.22-fold for the V1 method and by 2.86-fold for 
the V2 method, per unit time.

We further benchmarked the consistency of identified pro-
teins both from the repeated analysis of the same sample (such 
as replicate injections of sample A) and from the analysis of dif-
ferent samples (such as comparing samples B and C). Consistent 
with previous reports for DIA data completeness, both LF-DIA and 
plexDIA identified largely the same proteins from replicate injec-
tions, quantified by high Jaccard indices and only about 13–15% 
non-overlapping proteins, as shown in Fig. 2d,e. This overlap is 
similar to the overlap of a high-quality LF-DIA dataset by Navarro 
et al.23, as shown in Extended Data Fig. 4. The overlap between 
the proteins identified in distinct samples remained similarly high 
for plexDIA, whereas it was substantially reduced for the LF-DIA 
analysis (Fig. 2d,e). This increased repeatability for plexDIA likely 
arises from the fact that samples A, B and C are analyzed in parallel 
as part of one set. Such a multiplexed approach also reduces miss-
ing data within a plexDIA set to 2–3% (Fig. 2d,e). The larger the 
difference in protein composition between two samples, the higher 
the fraction of missing data for LF-DIA. In contrast, the missing 
data for plexDIA was low across all pairs of samples (Fig. 2e). The 
advantages of improved data completeness by plexDIA are espe-
cially pronounced when comparing the number of protein ratios 
from plexDIA and LF-DIA for samples, which differ more in pro-
tein abundance—for example, B and C; sample C has sixfold more 
E. coli and sixfold less S. cerevisiae relative to sample B. As a result, 
LF-DIA allowed the quantification of only 1,383 ratios between  
E. coli and S. cerevisiae proteins, whereas plexDIA allowed the 
quantification of 1,807 protein ratios (Fig. 3a–c).

Quantitative accuracy of plexDIA is similar to LF-DIA. To 
benchmark the quantitative accuracy and precision of plexDIA and 
LF-DIA, we compared the measured protein ratios between pairs of 
samples to the ones expected from the study design (Fig. 1). Because 
each sample contains a known amount of E. coli, S. cerevisiae and 
H. sapiens protein lysate, and most peptides are unique to each spe-
cies, the protein ratios between pairs of samples correspond to the 
corresponding mixing ratios23,24. The expected ratios allow for rig-
orous benchmarking of the accuracy and precision of plexDIA and 
LF-DIA. H. sapiens protein group ratios were excluded from analy-
ses involving sample C as they would compare U-937 (A and B)  
to Jurkat (C) cell lines; therefore, deviations from expected ratios 
would be a combination of quantitative noise and cell-type-specific 
differences in protein abundance.

For well-controlled comparisons between the quantitative accu-
racy of LF-DIA and plexDIA, we used the set of protein ratios quan-
tified by both methods. The comparison produced using the V1 
method is shown in Fig. 3a–c and Extended Data Fig. 6, whereas 
the results from V2 are shown in Extended Data Fig. 5. These 
results indicate that, on average, plexDIA has similar accuracy and 
precision to LF-DIA. Consistent with the expectation that label-
ing helps to control for nuisances, the results indicate that plexDIA 
quantification within a set is slightly more accurate than across sets  
(Fig. 3d). However, the difference is small, and accuracy across  
different plexDIA sets is high (Extended Data Fig. 7a–c).

By design, plexDIA allows quantifying precursors based on 
MS2-level and MS1-level data, and we evaluated the quantita-
tive accuracy for both levels of quantification (Fig. 3e). Because 
both lysine and N-terminal amine groups are labeled by the 
amine-reactive mTRAQ labels, both b-fragment and y-fragment 
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ions of lysine peptides are sample specific and, thus, contribute to 
MS2-level quantification. In contrast, only b-ions are sample spe-
cific for arginine peptides, and, thus, only b-ions are used for their 
MS2-level quantification. As a result, the MS2-level quantifica-
tion accuracy for arginine peptides is slightly lower (Fig. 3e). The 
small magnitude of this difference is likely attributable to the fact 
that mTRAQ stabilizes b-ions39. The accuracy of MS1 quantifica-
tion by V1 is high for all peptides and slightly higher than the accu-
racy of MS2 quantification (Fig. 3e). The MS2-optimized duty cycle 
(V2) resulted in deeper proteome coverage and lower accuracy for 
both LF-DIA and plexDIA (Extended Data Fig. 5). However, dif-
ferent duty cycles implemented on different instruments will likely 
improve the accuracy and coverage by MS2-optimized methods.

Repeatability of plexDIA is similar to LF-DIA. To assess the 
repeatability of plexDIA and LF-DIA quantitation, we computed 
the coefficient of variation (CV) for proteins quantified in triplicate 
runs for each method using MaxLFQ abundances40. We required 
each protein group to be quantified three times for plexDIA and 
LF-DIA, and then the CVs for the overlapping sample-specific pro-
tein groups (n = 12,863) were plotted in Fig. 4a. The results indicate 
that plexDIA and LF-DIA have relatively consistent quantitation 
and similar quantitative repeatability, with median CVs for repeated 
injections of 0.103 and 0.108, respectively. Repeatability of plexDIA 
was also compared for triplicates of the same labeled samples and 

for triplicates in which each replicate had samples with alternating 
labels. Median CVs for the triplicates were 0.110 and 0.148 for ‘same 
labels’ and ‘different labels’ experiments, respectively (Extended 
Data Fig. 7d).

Estimating differential protein abundance by plexDIA and 
LF-DIA. We investigated the agreement of differential protein 
abundance between U-937 and Jurkat cell lines with plexDIA and 
LF-DIA. Differential protein abundance was estimated from LF-DIA 
data, and the differentially abundant proteins at 1% FDR were used 
to assess the agreement between U-937 and Jurkat protein ratios 
estimated by plexDIA and LF-DIA (Fig. 4b). The estimates by the 
two methods are similar, as indicated by a Spearman correlation of 
0.90 for differentially abundant proteins (n = 1,078 at 1% FDR) and 
a Spearman correlation of 0.78 for all intersected human proteins 
(n = 2,728) (Fig. 4b).

We also compared the ability of plexDIA and LF-DIA to recall 
true differentially abundant proteins as a function of each method’s 
empirical FDR. Our experimental design from Fig. 1c provides 
strong ground truth. It dictates that, between samples A and B, only 
S. cerevisiae and E. coli are differentially abundant because they 
were spiked in at different ratios (1:2 and 4:1, respectively), whereas 
human proteins are not because they are present in a 1:1 ratio  
and compare the same cell type (U-937 monocytes). Therefore,  
true positives (S. cerevisiae and E. coli proteins) and true negatives 
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(H. sapiens proteins) are known. With this prior knowledge, we 
compared the number of true positives for LF-DIA and plexDIA 
as a function of the empirical FDR (Fig. 4c). Both methods used 
three replicates and performed similarly at 1% empirical FDR, with 
643 proteins and 663 proteins found to be differentially abundant 
for plexDIA and LF-DIA, respectively. The slight increase of true 
positives for LF-DIA at higher empirical FDR may be due to its 
slightly higher precision as visible in Fig. 3. In conclusion, plexDIA 
achieved similar statistical power as LF-DIA while using three times 
less instrument time and expense.

Cell division cycle analysis with plexDIA. Next, we applied 
plexDIA to quantify protein abundance across the cell division 
cycle (CDC) of U-937 monocyte cells. The CDC analysis allows 
further validation of plexDIA based on well-established biologi-
cal processes during the CDC while simultaneously offering the 
possibility of new discoveries. The ability of plexDIA to analyze  
small samples made it possible to isolate cells from different 
phases of the CDC based on their DNA content (Fig. 5a). The cell 
isolation used fluorescence-activated cell sorting (FACS), which 
allowed us to analyze cell populations from G1, S and G2/M 
phases without the artifacts associated with blocking the CDC to 
achieve population synchronization41.

The peptides from the sorted cells were labeled with non-isobaric 
isotopologous labels and then combined and analyzed both by 
MS1-optimized (V1) and MS2-optimized (V2) plexDIA methods 
(Fig. 5a). By using different data acquisition methods, we aimed 
to (1) reduce systematic biases that may be shared by technical 
replicates and (2) evaluate the agreement between MS1-based and 
MS2-based quantification by plexDIA in the context of a biological 
experiment. Analyzing the V1 and V2 data with DIA-NN resulted 
in 4,391 unique protein groups and 4,107 gene groups at 1% global 
FDR. These data were filtered to include only proteotypic pep-
tides, and then gene-level information was used for downstream 
protein set enrichment analysis (PSEA) and differential protein 
abundance analysis.

To identify biological processes regulated across the phases of 
the CDC, we performed PSEA using data from both V1 and V2 

(Fig. 5b). The V1 and V2 data indicated very similar PSEA patterns 
and identified canonical CDC processes, such as the activation of 
the MCM complex during S phase and chromatid segregation and 
mitotic nuclear envelope disassembly during G2/M phase (Fig. 5b). 
These expected CDC dynamics and the agreement between V1 and 
V2 results demonstrate the utility of plexDIA for biological inves-
tigations. Furthermore, the PSEA indicated metabolic dynamics in 
the tricarboxylic acid (TCA) cycle and fatty acid beta-oxidation. 
These results provide direct evidence for the suggested coordina-
tion among metabolism and cell division42,43.

To further explore the proteome remodeling during the CDC, 
we identified differentially abundant proteins across G1, S and 
G2/M phase (Fig. 5c). From the 4,107 proteins identified across 
V1-acquired and V2-acquired data, 400 proteins were found to 
be differentially abundant between cell cycle phases at 1% FDR. 
Some of these proteins are displayed in Fig. 5c, organized the-
matically based on their functions. Consistent with results from 
PSEA, we found good agreement between V1 and V2 and expected 
changes in protein abundance, such as polo-like kinase 1 and 
ubiquitin-conjugating enzyme E2 peaking in abundance during 
G2/M phase.

In addition to the differential abundance of classic CDC regu-
lators, we found that some poorly characterized proteins were 
also differentially abundant, such as proteins CDV3 and JPT2. To 
further investigate these proteins, we examined the extracted-ion 
chromatogram (XIC) for representative peptides from these pro-
teins (Fig. 5d). The XIC demonstrates consistent quantitative trends 
and co-elution among precursors and peptide fragments labeled 
with different mass tags. This consistency among the raw data bol-
sters the confidence in the findings by plexDIA, such as differential 
abundance of CDV3 and JPT2.

Single-cell analysis with plexDIA. Next, we evaluated the poten-
tial of plexDIA to quantify proteins from single human cells. Single 
cells from melanoma (WM989-A6-G3), pancreatic ductal adeno-
carcinoma (PDAC) and monocyte (U-937) cell lines were prepared 
and combined into plexDIA sets using nano-ProteOmic sample 
Preparation (nPOP)44.
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We aimed to test its generalizability to different types of MS 
detectors, an orbitrap and a time-of-flight (TOF) detector, and its 
ability to take advantage of ion mobility technology, such as trapped 
ion mobility spectrometry45. The technologies were implemented by 
analyzing single-cell plexDIA samples using two commercial plat-
forms: timsTOF SCP (Fig. 6a–f) and Q Exactive classic (Fig. 6g–l).  

Both platforms achieved high quantitative accuracy and data  
completeness. To support high sample throughput, both platforms 
used short chromatographic gradients to separate the peptides  
(Fig. 6d, j), which, in the case of timsTOF SCP, allowed quantify-
ing about 1,000 proteins per cell while using about 10 minutes of  
total instrument time (only 5 minutes of active chromatography) 
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per single cell. Thus, plexDIA increases sample throughput by  
3- to 12-fold over the top-performing single-cell proteomics  
methods that do not use isobaric mass tags46,47.

As observed with bulk samples, plexDIA resulted in high data 
completeness among single-cell proteomes (Fig. 6e,k). It exceeded 
98% within labeled sets analyzed by timsTOF SCP (Fig. 6e) and 
remained over 50% even between plexDIA sets analyzed by Q 
Exactive (Fig. 6k). This high level of data completeness is enabled 
by leveraging the co-elution of isotopologues with precisely known 
mass offsets (Fig. 1b). Still, about 5% of the single cells had similar 
missing data to negative controls and were removed from down-
stream analysis as sample preparation likely failed (Extended  
Data Fig. 8).

plexDIA quantified protein fold changes spanning a 1,000-fold 
dynamic range and exhibited good agreement with corresponding 
fold changes quantified from 100-cell bulk samples (Fig. 6f,l). To 
explore the raw data supporting these measurements, we plotted both 
MS1-level and MS2-level XICs from pairs of isotopologous precursors 
(Fig. 6m). The data indicate that (1) the isotopologously labeled pre-
cursors co-elute and apex synchronously, and (2) the lowly abundant 
precursors whose identification depended on the plexDIA module 
have precursors, fragments and intensities in excellent agreement with 
the more abundant isotopologues and with the bulk measurements 
(Fig. 6l,m). These findings demonstrate that plexDIA may improve 
the sensitivity of single-cell proteomic analysis and, thus, increase data 
completeness, especially across cells with very different proteomes.
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Sampling and detecting a sufficient number of precursor copies 
is key for accurate precursor quantification; otherwise, quantifica-
tion accuracy is undermined by counting noise19,48. Because peptide 
fragmentation is usually incomplete, approaches like plexDIA that 
can perform MS1-level quantification are likely to count more cop-
ies per peptide than approaches relying on MS2-level or MS3-level 
quantification6. To evaluate this expectation, we estimated the num-
ber of peptide and protein copies that the orbitrap counted from sin-
gle cells (Fig. 6n,o). The total number of peptide molecules counted 
by the Q Exactive instrument per single cell was about 300,000 and 
up to 1,000,000 for some single cells. The median number of copies 
sampled per peptide per single cell was about 30 (Fig. 6n,o). These 
estimates rely on orbitrap physics49,50 and were not extended to the 
single-cell measurements by the timsTOF SCP, which we expect  
to sample more protein copies per cell.

Single-cell plexDIA data acquired from Q Exactive and tim-
sTOF SCP instruments were projected using a weighted principal 
component analysis (PCA) (Fig. 6p). To evaluate if the cell type 
separation is consistent with relative protein levels measured in 
bulk samples, we also projected 100-cell bulk plexDIA standards 
acquired on Q Exactive (Fig. 6p). We found strong agreement 
between single-cell samples and 100-cell bulk samples. Similarly, 
single-cell data acquired by Q Exactive and timsTOF SCP clus-
tered by cell type, not platform type. To ensure that clustering was 
not an artifact of label-specific biases, we plotted the same PCA, 
except colored by the mTRAQ label that was used for tagging each 
single cell and found little to no dependence of labels on clustering 
(Extended Data Fig. 9).

Discussion
Although multiple methods allow increasing proteomics through-
put, plexDIA is distinct in simultaneously allowing high sensitiv-
ity, depth and accuracy. plexDIA enables a multiplicative increase 
(threefold with three labels) in the rate of consistent protein quan-
tification across limited sample amounts while preserving pro-
teomic coverage, quantitative accuracy, precision and repeatability 
of LF-DIA. Similarly to other labeling methods, such as TMT-DDA, 
parallel analysis of multiple samples by plexDIA saves LC–MS/MS 
time. Currently, the commercially available labels for plexDIA are 
low-plex (mTRAQ, TMT0/TMT/shTMT or dimethyl labeling12), 
compared to 18-plex isobaric TMTpro labels available for DDA4. This 
current plex disadvantage is offset by the parallel precursor analysis 
enabled by plexDIA. Indeed, quantifying about 8,000 proteins per 
sample took 0.5 hours for three-plexDIA (Extended Data Fig. 5) and 
1.1 hours for a highly optimized 16-plex TMTpro workflow51.

Furthermore, three-plexDIA affords higher sensitivity because it 
does not require offline fractionation and does not incur associated 
sample losses. We expect that the plexDIA framework will motivate 
the development of higher plex mass tags for plexDIA that are opti-
mized for different applications, such as for single-cell proteomics7.

The parallel sample and peptide analysis by plexDIA becomes 
increasingly important for lowly abundant samples because they 
require long ion accumulation times that undermine the through-
put of serial acquisition methods, such as TMT-DDA, even when 
the vast majority of MS2 scans result in confident peptide identifi-
cations7,52. Thus, plexDIA is particularly attractive for the analysis 
of nanogram samples as it may afford accurate and deep proteome 
quantification without using two-dimensional peptide separation 
(offline fractionation)7,19,28.

Our data demonstrate that plexDIA reduces the amount of miss-
ing data between diverse samples both within and across runs. This 
reduction stems from buffering sample-to-sample variability in 
protein composition. Furthermore, we introduced an approach for 
matching precursors within a run, which reduces missing data to a 
mere 2–3% in bulk samples (Fig. 2) and 2% in single-cell samples 
(Fig. 6). Thus, plexDIA analysis of samples with variable protein 

composition or abundance results in less missing data. This opens 
the potential for further gains. For example, small samples could be 
labeled and then combined with a labeled carrier sample to improve 
proteomic coverage of the smaller samples. Such non-isobaric car-
rier design will naturally extend the isobaric carrier concept20,28,53 
and its benefits to DIA analysis for deep single-cell proteomics anal-
ysis. Indeed, the dynamic range, accuracy and data completeness of 
the single-cell protein data obtained by plexDIA (Fig. 6) can enable 
interpreting natural variation across the proteomes of single cells54,55. 
plexDIA offers a framework that may scale to n labels and, thus, 
increase throughput n-fold and increase the fraction of proteins 
quantified across all samples. Crucially, plexDIA maintains accu-
rate quantification and good repeatability. Here we demonstrate this 
potential for n = 3. Increasing n beyond three offers clear benefits 
but also faces challenges. One challenge is the increased potential 
for interference, which can be resolved by increasing the resolving 
power of MS scans and improving data analysis. Another challenge 
is sampling enough ions from each peptide given the finite capac-
ity of MS detectors, which can be relieved by sampling smaller m/z 
ranges—for example, quantification relying on small MS2 windows 
or split m/z ranges at MS1. The capacity of MS detectors is less limit-
ing for small samples, such as single cells, and, thus, increasing the 
number of labels holds much potential for single-cell proteomics, as 
previously discussed11,28.

plexDIA can enable further gains in sensitivity for single-cell 
proteomics7, beyond the results demonstrated in Fig. 6. This 
may be achieved by including an isotopologous carrier channel, 
wherein a concentrated standard or pooled sample is used (1) to 
increase the sensitivity and, thus, identification numbers and data 
completeness in other channels and (2) to provide a reference sig-
nal for quantification. The quantitative aspect here has a double 
benefit. Quantification accuracy and robustness can be improved 
by (1) using MS1-level and MS2-level signals that are minimally 
affected by interference and by (2) calculating quantities relative 
to the internal standard, which is likely to also substantially reduce 
the batch effects associated with LC–MS performance variation. 
This makes the technology introduced by plexDIA highly promis-
ing not just for very deep profiling of selected samples using offline 
fractionation but also for large-scale experiments, wherein batch 
effects are a substantial challenge. Another avenue of plexDIA 
is increasing the throughput of applications seeking to quantify 
protein interactions, conformations and activities. For example, 
plexDIA is readily compatible with the recently reported covalent 
protein painting that enables analysis of protein conformations 
in living cells56,57. Because there are no fundamental limitations 
preventing the creation of non-isobaric labels that would allow 
a higher degree of multiplexing with DIA, we expect plexDIA to 
enable even higher throughput in the future. Given these con-
siderations, we think that plexDIA will eventually become the  
predominant DIA workflow, preferable over LF approaches for 
most applications.
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Methods
Cell culture. U-937 (monocytes) and Jurkat (T cells) were cultured in RPMI 1640 
Medium (Sigma-Aldrich, R8758), and HPAF-II cells (PDACs, American Type 
Culture Collection (ATCC), CRL-1997) were cultured in EMEM (ATCC, 30-2003). 
All three cell lines were supplemented with 10% FBS (Gibco, 10439016) and 1% 
penicillin–streptomycin (Gibco, 15140122) and grown at 37 °C. Melanoma cells 
(WM989-A6-G3, a kind gift from Arjun Raj, University of Pennsylvania) were 
grown as adherent cultures in TU2% media, which is composed of 80% MCDB 
153 (Sigma-Aldrich, M7403), 10% Leibovitz L-15 (Thermo Fisher Scientific, 
11415064), 2% FBS, 0.5% penicillin–streptomycin and 1.68 mM calcium chloride 
(Sigma-Aldrich, 499609). All cells were harvested at a density of 106 cells per ml 
and washed with sterile PBS. For bulk plexDIA benchmarks, U-937 and Jurkat cells 
were resuspended to a concentration of 5 × 106 cells per ml in LC–MS water and 
stored at −80 °C.

E. coli and S. cerevisiae were grown at room temperature (21 °C), shaking 
at 300 r.p.m., in Luria Broth (LB) and yeast-peptone-dextrose (YPD) media, 
respectively. Cell density was measured by OD600, and cells were harvested mid-log 
phase, pelleted by centrifugation and stored at −80 °C.

Preparation of bulk plexDIA samples. The harvested U-937 and Jurkat cells 
were heated at 90 °C in a thermal cycler for 10 minutes to lyse by mPOP58. 
Triethylammonium bicarbonate (TEAB) was added to a final concentration 
of 100 mM (pH 8.5) for buffering, and then proteins were reduced in 
tris(2-carboxyethyl)phosphine (TCEP, Supelco, 646547) at 20 mM for 30 minutes 
at room temperature. Iodoacetamide (Thermo Fisher Scientific, A39271) was 
added to a final concentration of 15 mM and incubated at room temperature for 
30 minutes in the dark. Next, benzonase nuclease (Millipore, E1014) was added to 
0.3 U µl−1 of Trypsin Gold (Promega, V5280) to 1:25 ratio of substrate:protease and 
LysC (Promega, VA1170) to 1:40 ratio of substrate:protease and then incubated 
at 37 °C for 18 hours. E. coli and S. cerevisiae samples were prepared similarly; 
however, instead of lysis by mPOP, samples were lysed in 6 M urea and vortexed 
with acid-washed glass beads alternating between 30 seconds vortexing and 
30 seconds resting on ice, repeated for a total of five times.

After digestion, all samples were desalted by Sep-Pak (Waters, WAT054945). 
Peptide abundance of the eluted digests was estimated by NanoDrop A280, and 
then the samples were dried by speed vacuum and resuspended in 100 mM TEAB 
(pH 8.5). U-937, Jurkat, E. coli and S. cerevisiae digests were mixed to generate 
three samples, which we refer to as samples A, B and C; the mixing ratios are 
described in Extended Data Fig. 10. Samples A, B and C were split into two 
groups: (1) was kept label free, and (2) was labeled with mTRAQ Δ0, Δ4 or Δ8 
(SciEx, 4440015, 4427698 and 4427700), respectively. An appropriate amount 
of each respective mTRAQ label was added to each sample A–C, following the 
manufacturer’s instructions. In short, mTRAQ was resuspended in isopropanol 
and then added to a concentration of 1 U per 100 µg of sample and left to incubate 
at room temperature for 2 hours. We added an extra step of quenching the 
labeling reaction with 0.25% hydroxylamine for 1 hour at room temperature, as is 
commonly done in TMT experiments where the labeling chemistry is the same6,50. 
After quenching, the mTRAQ-labeled samples (A–C) were pooled to produce the 
final multiplexed set used for benchmarking plexDIA.

Preparation of single-cell plexDIA samples. Single cells were thawed from liquid 
nitrogen storage in 10% DMSO and culture media at a concentration of 1 × 106 cells 
per ml. Cells were first washed twice in PBS to remove DMSO and media and then 
were suspended in PBS at 200 cells per µl for sorting and sample preparation by 
nPOP, as detailed by Leduc et al.44. In brief, single cells were isolated by cellenONE 
and prepared in droplets on the surface of a glass slide, including lysing, digesting 
and labeling individual cells. In each droplet, single cells were lysed in 100% 
DMSO; proteins were digested with Trypsin Gold at a concentration of 120 ng µl−1 
and 5 mM HEPES (pH 8.5); peptides were chemically labeled with mTRAQ; and 
then, finally, single cells were pooled into a plexDIA set for subsequent analysis. 
Cells were prepared in clusters of three for ease of downstream pooling into 
plexDIA sets, and a total of 48 plexDIA sets were prepared per single glass slide.

Modifications were made to the original nPOP sample preparation protocol to 
enable single-cell plexDIA. We found the mTRAQ labeling reaction, unlike TMT 
labeling reagents, requires the presence of aqueous phase; therefore, an additional 
15 nl of 200 mM TEAB buffer (pH 8.5) was added to each droplet, and the droplets 
were not dried down before adding mTRAQ labels. mTRAQ labels were dissolved 
at a concentration of 0.02 U µl−1 in ethanol, and 30 nl of this solution was added to 
each single cell. To dispense ethanol with the cellenONE, the cellenONE pipette 
aspirated 5 µl of air, followed by 20 µl of ethanol before aspirating 10 µl of mTRAQ. 
Lastly, when quenching the labeling reaction, only one addition of 20 nl of 5% 
hydroxlamine was performed. All prior and subsequent sample preparation steps 
were carried out as specified by Leduc et al.44.

Each plexDIA set was composed of a single PDAC, melanoma and U-937 
cell, except if a negative control was present in place of a cell. For samples run on 
the Q Exactive, every fourth set contained a negative control that received all the 
same reagents but did not include a single cell. This resulted in 132 single cells 
prepared with 12 total negative controls. Ten additional plexDIA sets were run on 
the timsTOF SCP for a total of 30 single cells (no negative controls). Cell types 

were labeled with randomized mass tags designs in the plexDIA sets to avoid any 
systematic biases with labeling. Specifically, each cell type was labeled with each 
mass tag as described in the single-cell metadata file.

CDC, FACS and sample preparation. U-937 monocytes were grown as described 
above and harvested and aliquoted to a final 1-ml suspension of approximately 
1 × 106 cells in RPMI 1640 Medium. Then, DNA was stained by incubating the cells 
with Vybrant DyeCycle Violet Stain (Invitrogen, V35003) at a final concentration 
of 5 µM in the dark for 30 minutes at 37 °C, as per the manufacturer’s instructions. 
Next, the cells were centrifuged and then resuspended in PBS to a density of 1 × 106 
cells per ml. The cell suspension was stored on ice and protected from light until 
sorting began.

The cells were then sorted with a Beckman CytoFLEX SRT. The population of 
U-937s was gated to select singlets based on FSC-A and FSC-H; this population 
of singlets was then sub-gated based on DNA content using the PB-450 laser (ex 
= 405 nm / em = 450 nm). The G1 population is the most abundant population in 
actively dividing cells, and the G2/M populations should theoretically have double 
the intensity (DNA content), whereas the S-phase lies in between. Populations of 
G1, S and G2/M cells were collected based on these sub-gates and sorted into 2-ml 
Eppendorf tubes.

After sorting, the cells were centrifuged at 300g for 10 minutes; PBS was 
removed; and then the cells were resuspended in 20 µl of HPLC water to reach a 
density of approximately 4,000 cells per µl. The cell suspensions were lysed using 
the mPOP method, which involves freezing at −80 °C and then heating to 90 °C for 
10 minutes. Next, the cell lysates were prepared exactly as described in the ‘Sample 
preparation’ section. In brief, the cell lysate was buffered with 100 mM TEAB (pH 
8.5), and then proteins were reduced with 20 mM TCEP for 30 minutes at room 
temperature. Next, iodoacetamide was added to a final concentration of 15 mM 
and incubated at room temperature for 30 minutes in the dark, and then benzonase 
nuclease was added to 0.3 U µl−1. Trypsin Gold and LysC were then added to the 
cell lysate at 1:25 and 1:40 ratio of protease:substrate, and then the samples were 
incubated at 37 °C for 18 hours. After digestion, the peptides were desalted by stage 
tipping with C18 extraction disks (Empore, 66883-U) to remove any remaining 
salt that was introduced during sorting59. G1 cells were labeled with mTRAQ Δ0; S 
cells were labeled with mTRAQ Δ4; and G2/M cells were labeled with Δ8 and then 
combined to form a plexDIA set of roughly 2,000 cells per cell cycle phase (label). 
The combined set was analyzed with 2-hour active gradients of MS1-optimized 
(V1) and MS2-optimized (V2) methods as described in the ‘Acquisition of bulk 
data’ section.

Acquisition of bulk data. Multiplexed and LF samples were injected at 1-µl 
volumes via Dionex UltiMate 3000 UHPLC to enable online nLC with a 
25 cm × 75 µm IonOpticks Aurora Series UHPLC column (AUR2-25075C18A). 
These samples were subjected to electrospray ionization (ESI) and sprayed into a 
Q Exactive orbitrap for MS analysis. Buffer A is made of 0.1% formic acid (Pierce, 
85178) in LC–MS-grade water. Buffer B is made of 80% acetonitrile and 0.1% 
formic acid mixed with LC–MS-grade water.

The gradient used for LF-DIA is as follows: 4% Buffer B (minutes 0–11.5), 
4–5% Buffer B (minutes 11.5–12), 5–28% Buffer B (minutes 12–75), 28–95% 
Buffer B (minutes 75–77), 95% Buffer B (minutes 77–80), 95–4% Buffer B (minutes 
80–80.1) and then hold at 4% Buffer B until minute 95, flowing at 200 nl min−1 
throughout the gradient. Instrument control and data acquisition were performed 
via Xcalibur. The V1 duty cycle was comprised of 5×(1 MS1 full scan × 5 MS2 
windows) as illustrated in Fig. 1b. Thus, the duty cycle has a total of 25 MS2 
windows to span to full m/z scan range (380–1,370 m/z) with 0.5-Thomson (Th) 
overlap between adjacent windows. The length of the windows was variable 
for each subcycle (20 Th for subcycles 1–3, 40 Th for subcycle 4 and 100 Th for 
subcycle 5). Each MS1 full scan was conducted at 140,000 resolving power, 3 × 106 
automatic gain control (AGC) maximum and 500-ms maximum injection time. 
Each MS2 scan was conducted at 35,000 resolving power, 3 × 106 AGC maximum, 
110-ms maximum injection time and 27% normalized collision energy (NCE) with 
a default charge of 2. The RF S-lens was set to 80%. The V2 duty cycle consisted 
of one MS1 scan conducted at 70,000 resolving power with a 300-ms maximum 
injection time and 3 × 106 AGC maximum, followed by 40 MS2 scans at 35,000 
resolving power with 110-ms maximum injection time and 3 × 106 AGC maximum. 
The window length for the first 25 MS2 scans was set to 12.5 Th; the next seven 
windows were 25 Th; and then the last eight windows were 62.5 Th. Adjacent 
windows shared a 0.5-Th overlap. All other settings were the same as the LF-DIA 
V1 method. All LF samples for bulk benchmarking containing S. cerevisiae, E. coli 
and H. sapiens were run in triplicate. However, the third run of LF-DIA sample C 
using the V2 method was an outlier and was omitted from analysis due to poor 
performance.

mTRAQ labeling increases hydrophobicity of peptides, which is why a higher 
% Buffer B was used during the active gradient of multiplexed samples; in addition, 
the scan range was shifted 100 m/z higher than LF-DIA to account for the added 
mass of the label. The gradient used for plexDIA is as follows: 4% Buffer B 
(minutes 0–11.5), 4–7% Buffer B (minutes 11.5–12), 7–32% Buffer

B (minutes 12–75), 32–95% Buffer B (minutes 75–77), 95% Buffer B (minutes 
77–80), 95–4% Buffer B (minutes 80–80.1) and then hold at 4% Buffer B until 
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minute 95, flowing at 200 nl min−1 throughout the gradient. The plexDIA V1 duty 
cycle was comprised of 5×(1 MS1 full scan × 5 MS2 windows), for a total of 25 
MS2 windows to span to full m/z scan range (480–1,470 m/z) with 0.5-Th overlap 
between adjacent windows. The length of the windows was variable for each 
subcycle (20 Th for subcycles 1–3, 40 Th for subcycle 4 and 100 Th for subcycle 5).  
Each MS1 full scan was conducted at 140,000 resolving power, 3 × 106 AGC 
maximum and 500-ms maximum injection time. Each MS2 scan was conducted 
at 35,000 resolving power, 3 × 106 AGC maximum, 110-ms maximum injection 
time and 27% NCE with a default charge of 2. The RF S-lens was set to 30%. The 
plexDIA V2 duty cycle consisted of one MS1 scan conducted at 70,000 resolving 
power with 300-ms maximum injection time and 3 × 106 AGC maximum, followed 
by 40 MS2 scans at 35,000 resolving power with 110-ms maximum injection time 
and 3 × 106 AGC maximum. The window length for the first 25 MS2 scans was set 
to 12.5 Th; the next seven windows were 25 Th; and then the last eight windows 
were 62.5 Th. Adjacent windows shared a 0.5-Th overlap. All other settings were 
the same as the plexDIA V1 method. Data acquired for the CDC used 2-hour 
active gradients of the V1 and V2 methods.

The gradient used for mTRAQ DDA is the same used for plexDIA. However, 
the duty cycle was a shotgun DDA method. The MS1 full scan range was 
450–1,600 m/z and was performed with 70,000 resolving power, 3 × 106 AGC 
maximum and 100-ms injection time. This shotgun DDA approach selected the 
top 15 precursors to send for MS2 analysis at 35,000 resolving power, 1 × 105 AGC 
maximum, 110-ms injection time, 0.3-Th isolation window offset, 0.7-Th isolation 
window length, 8 × 103 minimum AGC target and 30-second dynamic exclusion.

Acquisition of single-cell data. Q Exactive. plexDIA single-cell sets and 100-cell 
standards were injected at 1-µl volumes via Dionex UltiMate 3000 UHPLC to 
enable online nLC with a 15 cm × 75 µm IonOpticks Aurora Series UHPLC column 
(AUR2-15075C18A). Instrument control and data acquisition were performed 
via Xcalibur. These samples were subjected to ESI and sprayed into a Q Exactive 
orbitrap for MS analysis. Buffer A is made of 0.1% formic acid (Pierce, 85178) in 
LC–MS-grade water. Buffer B is made of 80% acetonitrile and 0.1% formic acid 
mixed with LC–MS-grade water. The gradient used is as follows: 4% Buffer B 
(minutes 0–2.5), 4–8% Buffer B (minutes 2.5–3), 8–32% Buffer B (minutes 3–33), 
32–95% Buffer B (minutes 33–34), 95% Buffer B (minutes 34–35), 95-4% Buffer 
B (minutes 35–35.1) and then hold at 4% Buffer B until minute 53, flowing at 
200 nl min−1 throughout the gradient. The plexDIA duty cycle was comprised of 
one MS1 followed by four DIA MS2 windows of variable m/z length (specifically 
120 Th, 120 Th, 200 Th and 580 Th) spanning 378–1,402 m/z. Each MS1 and MS2 
scan was conducted at 70,000 resolving power, 3 × 106 AGC maximum and 300-ms 
maximum injection time. NCE was set to 27% with a default charge of 2. The RF 
S-lens was set to 80%.

To generate a spectral library from 100-cell standards on the Q Exactive, the 
same settings were used with the exception that the duty consisted of one MS1 
and 25 MS2 windows of variable m/z length (specifically, 18 windows of 20 Th, 
two windows of 40 Th, three windows of 80 Th and two windows of 160 Th). The 
MS2 scans were conducted at 35,000 resolving power, 3 × 106 AGC maximum and 
110-ms maximum injection time.

timsTOF SCP. The single-cell plexDIA sets were separated on a nanoElute liquid 
chromatography system (Bruker Daltonics) using a 25 cm × 75 µm, 1.6-µm C18 
(AUR2-25075C18A-CSI, IonOpticks). The analytical column was kept at 50 °C. 
Solvent A was 0.1% formic acid in water, and solvent B was 0.1% formic acid 
in acetonitrile. The column was equilibrated with 4 column volumes of mobile 
phase A before sample loading. The peptides were separated over 30 minutes at 
250 nl min−1 using the following gradients: 2–17% B in 15 minutes, 17–25% B in 
5 minutes, 25–37% B in 3 minutes and 37–85% B in 3 minutes and then maintained 
at 85% for 4 minutes.

Instrument control and data acquisition were performed via timsControl 3.1. 
The timsTOF SCP was operated in dia-PASEF mode with the following settings: 
mass range 100–1,700 m/z, 1/k0 Start 0.6 V s cm−2, End 1.2 V s cm−2; ramp and 
accumulation times were set to 166 ms; capillary voltage was 1,600 V, dry gas 3 
L min−1 and dry temp 200 °C. dia-PASEF settings: Each cycle consisted of 1× MS1 
full scan and 5× MS2 windows covering 297.7–797.7 m/z and 0.63–1.10 1/k0. Each 
window was 100 Th wide by 0.2 V s cm−2 high. There was no overlap in either m/z 
or 1/k0 (Fig. 6). The cycle time was 0.68 seconds. Collision-induced dissociation 
(CID) energy was 20–59 eV as a function of the inverse mobility of the precursor.

Spectral library generation. The in silico predicted spectral library used 
in LF-DIA analysis was generated by DIA-NN’s (version 1.8.1 beta 16) 
deep-learning-based spectra and retention time and IMs prediction based 
on Swiss-Prot H. sapiens, E. coli and S. cerevisiae FASTAs (canonical and 
isoform) downloaded in February 2022. The spectral library used for plexDIA 
benchmarking was created in a similar process, with the exception of a few 
additional commands entered into the DIA-NN command line GUI: (1) 
{–fixed-mod mTRAQ 140.0949630177, nK} and (2) {–original-mods}. Two 
additional libraries were generated: (1) mTRAQ-labeled spectral library from 
FASTAs containing only E. coli and S. cerevisiae sequences; (2) mTRAQ-labeled 
spectral library from a FASTA containing only H. sapiens sequences. The former 

was used to search data shown in Extended Data Fig. 2, and the latter was used 
to search CDC and 100-cell standards. Triplicates of 100-cell standards of PDAC, 
melanoma and U-937 cells were run with the one MS1 × 25 MS2 scans method, 
searched using the in silico generated human-only spectral library. The results of 
this search generated a sample-specific library covering about 5,000 protein groups. 
This library was used to search single-cell plexDIA sets acquired on the Q Exactive 
and on the timsTOF SCP as well as 100-cell standards run on the Q Exactive with 
the same method used to acquire single-cell plexDIA data.

plexDIA module in DIA-NN. A distinct feature of DIA-MS proteomics is the 
complexity of produced spectra, which are a mixture of fragment ions originating 
from multiple co-isolated precursors. This complexity has necessitated the rise of 
a variety of highly sophisticated algorithms for DIA data processing. Current DIA 
software, such as DIA-NN25, aims to find peak groups in the data that best match 
the theoretical information about such peptide properties as the MS/MS spectrum, 
the retention time and the ion mobility. Once identified correctly, the peak 
group—that is, the set of XICs of the precursor and its fragments in the vicinity of 
the elution apex—allows to integrate either the MS1-level or MS2-level signals to 
quantify the precursor, which is the ultimate purpose of the workflow.

Similarly to match-between-runs (MBR) algorithms, plexDIA data provide 
the opportunity to match corresponding ions, in this case between the same 
peptide labeled with different mass tags. However, the use of isotopologous mass 
tags, such as mTRAQ, allows to match the retention times within a run with 
much higher accuracy than what can be achieved across runs. Thus, the sequence 
propagation can be more sensitive and reliable than with MBR7. This allows to 
enhance sequence identifications analogously to the isobaric carrier concept 
introduced by TMT-based single-cell workflows53,60. With the isobaric carrier 
approach, a carrier channel is loaded with a relatively high amount of peptides 
originating from a pooled sample that facilities peptide sequence identification20,28. 
We implemented a similar approach in the plexDIA module integrated in 
DIA-NN. Once a peptide is identified in one of the channels, its exact retention 
time apex can be determined, which, in turn, helps identify and quantify the 
peptide in all of the channels by integrating the respective precursor (MS1) or 
fragment ion (MS2) signals.

Apart from the identification performance, plexDIA also can increase 
quantification accuracy. The rich complex data produced by DIA promote 
more accurate quantification because of algorithms that select signals from MS/
MS fragment ions that are affected by interferences to the least extent25. For 
LF-DIA, DIA-NN selects fragments in a cross-run manner: fragments that tend 
to correlate well with other fragments across runs are retained, whereas those 
that often exhibit poor correlations due to interferences are excluded from 
quantification. Although this approach yields good results, a limitation remains 
for LF-DIA: fragment ions only affected by interferences in a modest proportion 
of runs are still used for quantification, thus undermining the reliability of the 
resulting quantities in those runs. Here, plexDIA provides a unique advantage. 
Theoretically, a single MS1-level or MS2-level signal with minimal interference 
is sufficient to calculate the quantitative ratio between the channels. In this 
case, if low interference quantification is possible in at least one ‘best’ channel, 
this quantity can be multiplied by the respective ratios across other channels to 
obtain accurate estimates of quantities in all channels that share at least one low 
interference signal with this ‘best’ channel. This idea is implemented in DIA-NN 
to produce ‘translated’ quantities, which have been corrected by using ratios of 
high-quality MS1 or MS2 signals between channels as described in Fig. 1b and 
Extended Data Fig. 1.

Estimating FDR. The DIA-NN module uses a decoy-based approach, but, instead 
of regular decoy precursors, as used in the LF setting and likewise during the first 
step of the plexDIA data processing workflow, it relies on a decoy channel. Here, 
for each peak group match, regular or translated, DIA-NN calculates a number of 
scores that reflect the channel-specific signal evidence. A separate classifier based 
on an ensemble of neural networks, identical in architecture to the one used to 
obtain the regular q values25, is then trained to distinguish between sets of scores 
originating from target channels and the decoy channel, leading to the calculation 
of composite scores for the peak groups and, thus, the channel q values.

Data analysis with DIA-NN. DIA-NN (version 1.8.1 beta 16) was used to search 
LF-DIA and plexDIA raw files, which is available at https://plexdia.slavovlab.net/ 
and https://scp.slavovlab.net/plexDIA. All LF-DIA benchmarking raw files were 
searched together with MBR if the same duty cycle was used; likewise, all plexDIA 
benchmarking raw files were searched together with MBR if the same duty cycle 
was used, with the exception of the CDC experiments that used V1 and V2 
methods—these two runs were searched together.

DIA-NN search settings: Library Generation was set to ‘IDs, RT and IM 
Profiling’, Quantification Strategy was set to ‘Peak height’, scan window = 1,  
Mass accuracy = 10 p.p.m. and MS1 accuracy = 5 p.p.m. ‘Remove likely 
interferences’, ‘Use isotopologues’ and ‘MBR’ were enabled. Additional commands 
entered into the DIA-NN command line GUI for plexDIA: (1) {–fixed-mod 
mTRAQ 140.0949630177, nK}, (2) {–channels mTRAQ, 0, nK, 0:0; mTRAQ,  
4, nK, 4.0070994:4.0070994; mTRAQ, 8, nK, 8.0141988132:8.0141988132},  
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(3) {–original-mods}, (4) {–peak-translation}, (5) {–ms1-isotope-quant},  
(6) {–report-lib-info} and (7) {–mass-acc-quant 5.0}. Note, (7) is only necessary 
for instances when MS2 quantitation is intended to be used; this command will 
use the pre-defined mass accuracy (for example, 10 p.p.m.) to identify precursors 
but restrict the mass error tolerance to the value specified for quantitation; this 
can help reduce the effect of interferences for MS2-level quantitation. For LF-DIA, 
only the following additional commands were used: (1) {–original-mods}, (2) 
{–peak-translation}, (3) {–ms1-isotope-quant}, (4) {–report-lib-info} and (5) {–
mass-acc-quant 5.0}. The same search settings were used for single-cell Q Exactive 
and timsTOF SCP data; however ‘scan window’ was increased to 5.

Searching DDA data with MaxQuant. MaxQuant (version 1.6.17.0) was used 
to search triplicate mTRAQ DDA, bulk benchmarking runs. MBR was enabled, 
and ‘Type’ was selected as ‘Standard’ with ‘Multiplicity’ = 3; mTRAQ-Lys0 
and mTRAQ-Nter0, mTRAQ-Lys4 and mTRAQ-Nter4 and mTRAQ-Lys8 and 
mTRAQ-Nter8 were selected for light, medium and heavy labels, respectively. 
Variable modifications included Oxidation (M) and Acetyl (Protein-N-term); 
Carbamidomethyl (C) was selected as a fixed modification. Trypsin was selected  
as the protease and searched with maximum missed cleavage = 2.

Quantifying proteins for bulk plexDIA benchmarks. MaxLFQ abundance for 
protein groups was calculated based on MS1 intensities (specifically the ‘MS1 
Area’ column output by DIA-NN) using the DIA-NN R package25 for data acquired 
with the V1 method. However, for data acquired using the V2 method, MS2 
quantitation (specifically the ‘Precursor Translated’ column output by DIA-NN) 
was used for quantitation. These protein abundances were used to calculate protein 
ratios across samples, which were normalized by subsetting human proteins (which 
are present in a 1:1 ratio, theoretically) and multiplying by a scalar such that the 
human protein ratios were centered on 1, and, thus, the other species (E. coli and 
S. cerevisiae) would be systematically shifted to account for any small loading 
differences across samples.

The quantitative comparisons between LF-DIA and plexDIA throughout 
this article are for intersected sets of proteins so that the results would not be 
influenced by proteins analyzed by only one method and not the other. For 
example, compared distributions were for the same set of proteins to avoid  
‘survival biases’61.

PSEA. PSEA was performed across the multiplexed bulk samples corresponding to 
cells sorted by DNA content into cell cycle phases (G1, S and G2/M). The reference 
human gene set database was acquired from the Gene Ontology Annotation62. 
The Kruskal–Wallis test was used to determine whether the hypothesis that all 
multiplexed samples had equivalent median protein abundances for a functionally 
annotated group of proteins could be rejected at a q value ≤0.05. Only protein sets 
with at least four proteins present were statistically tested. PSEA was run separately 
for the multiplexed samples analyzed by V1 and V2 methods. Protein sets were 
combined from both data acquisition methods if at least one method produced  
a q value ≤0.05.

Differential protein abundance testing. Differential protein abundance testing 
was performed using precursor-level quantitation. To account for variation in 
sample loading amounts, precursors from each sample were normalized to their 
sample median. Then, each precursor was normalized by its mean across samples 
to convert it to relative levels. The normalized relative precursor intensities from 
different replicates were grouped by their corresponding protein groups and 
compared by a two-tailed t-test (Fig. 4b,c) or ANOVA (Fig. 5c) to estimate the 
significance of differential protein abundance across samples/conditions. This 
comparison captures both the variability between different replicates and different 
peptides originating from the same protein. To correct for multiple hypotheses 
testing, we used the Benjamini–Hochberg method to estimate q values for 
differential abundance of proteins and protein sets.

Relative protein fold change between U-937 cells and Jurkat cells, bulk. Protein 
group abundances were calculated by MaxLFQ from triplicates of LF-DIA and 
plex-DIA; specifically, sample B and sample C were compared to calculate relative 
fold changes between H. sapiens cell lines U-937 and Jurkat. The protein groups 
plotted were required to be quantified in each of the triplicates of plexDIA and 
LF-DIA. A Spearman correlation was calculated for all protein groups and for 
differentially abundant protein groups.

Correcting isotopic envelope of plexDIA precursors. mTRAQ labels, which 
were used in this demonstration of plexDIA, are separated by 4 Da. Because 
C-terminal arginine precursors are singly labeled and have a mere 4 Da 
separating isotopologous precursors, there is greater potential of isotopic 
envelope interference from lighter channels into heavier channels than there is 
for C-terminal lysine precursors, which would be separated by 8 Da; therefore, 
to improve quantitative accuracy, we correct the theoretical super-position of 
isotopic envelopes between channels for C-terminal arginine precursors. This can 
be accomplished because each precursor has a well-defined theoretical distribution 
of isotopes that we model with a binomial distribution; we use this theoretical 

distribution of isotopes to subtract and add back a precise amount of signal from 
heavier channels to lighter channels for MS1-level quantitation of each precursor.

Extracted ion current. A precursor from a subset of proteins found to be 
differentially abundant was selected to be plotted to display the extracted ion 
current at MS1 and for fragments at MS2. Ion current was extracted using the 
DIA-NN GUI command interface by typing {–vis 25, PEPTIDE} where ‘PEPTIDE’ 
is the peptide sequence and ‘25’ is the number of scans to extract. MS1 and MS2 
XICs were plotted to show the full elution profile. The four highest correlated 
fragments at MS2 were plotted; y-ions from C-terminal arginine peptide were 
excluded from plotting at MS2 level because these fragments are a super-position 
across samples as the C-terminus of arginine peptides is not labeled and, therefore, 
not sample specific. The lines in Figs. 5d and 6m were colored dynamically as a 
function of intensity.

Estimating peptide and protein copy numbers. Precursor copy numbers at the 
MS1 level were estimated based on the signal-to-noise (S/N) level of individual 
peaks. The noise level of centroided spectra were used as reported by the Thermo 
firmware and extracted using a modified version of the ThermoRawFileParser63. 
Precursors reported by DIA-NN were matched to the S/N data based on the 
reported retention time with a tolerance of five scans and 12-p.p.m. mass error. The 
number of charges in an orbitrap is proportional to the S/N level and scales with 
a linear factor CN. This factor has been estimated to be CN = 3.5 for the Q Exactive 
orbitrap64,65 and has been confirmed by investigations with high-field orbitraps49. 
This proportionality constant was estimated at a resolving power of 240,000 and 
must be scaled by the square root ratio with the resolving power used for acquiring 
the spectra (R = 70,000). Precursor copy numbers are then calculated based on the 
number of charges z per precursor.

copy number = S
N

·

CN

z

√

240, 000
R

Analogous to the quantification, copy numbers were summed over the M and 
M + 1 peaks. Peptide-level copy numbers were calculated as the sum of all charge 
states found for a given peptide; protein-level copy numbers were calculated as the 
sum of all peptides not shared with other proteins (proteotypic).

Single-cell data analysis. To increase sensitivity of single-cell analysis, Ms1.
Extracted quantities output by DIA-NN were used for quantitation rather 
than Ms1.Area. Single cells with more than 60% missing data (no extracted 
MS1-level quantitation) at precursor level were considered to have failed in 
sample preparation and were removed from analysis. Quantitative accuracy 
of single-cell sets was assessed by calculating fold change between PDAC 
and U-937 cell types of averaged single-cell MaxLFQ protein quantities and 
calculating a Spearman correlation to 100-cell bulk comparisons. The 100-cell 
bulk comparisons consisted of triplicates in which each replicate alternated the 
labeling scheme. For a protein group to be included in the comparison, it was 
required to be quantified in at least five single cells and two-thirds of the bulk 
triplicates. Both the timsTOF SCP single-cell data and Q Exactive single-cell 
data were benchmarked to the same 100-cell Q Exactive-acquired plexDIA sets. 
Because missing data in DIA is related to low protein abundance, the missing 
MaxLFQ protein abundances in single cells and bulk were imputed with the 
lowest non-zero protein abundance for that protein in the same cell type and 
condition (bulk or single cells). The mean of each protein across the single-cell 
observations and bulk triplicates (respectively) was taken to represent that cell 
type and condition-specific protein abundance.

Single-cell sets acquired on the timsTOF SCP and Q Exactive were prepared on 
different days with different batches of cells. Generally, the data are quite similar as 
indicated by PCA (Fig. 6p), but quantitative discrepancies between bulk samples, 
which were acquired on the Q Exactive from one batch of cells, and single-cell 
sets on the timsTOF SCP from another batch of cells, may arise from real cellular 
differences as they were prepared from different cellular batches.

Next, 100-cell bulk plexDIA triplicates were used to identify proteins that 
were differentially abundant between U-937 and PDAC cells. Three proteins 
were chosen, and one precursor from each protein was selected to have its ion 
chromatogram extracted and plotted from single-cell Q Exactive-acquired data. See 
the ‘Extracted ion current’ subsection for more details about how this is performed.

PCA was performed on Ms1.Extracted timsTOF SCP single-cell data, Q 
Exactive single-cell data and Q Exactive 100-cell data. The following is a brief 
outline of the computational workflow. The abundance of each precursor was 
divided by the mean abundance of all three isotopologous precursors within 
the plexDIA set; then, the precursor of each labeled cell in each plexDIA was 
normalized to its median abundance; and then, each normalized precursor was 
divided by the mean of normalized precursor abundance across all labels and sets. 
These normalized precursor abundances were collapsed to protein group level by 
the median normalized abundance precursor. The protein group data were then 
normalized in the same way the precursors were normalized. Missing protein 
group data for each cell were imputed by k-nearest neighbors; the dataset was batch 
corrected for labels; and finally, a PCA was generated from the data. To increase 
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the weights of proteins that are differentially abundant between the single cells in a 
coherent manner, we weighted each protein with the norm of its correlation vector 
(vector of pairwise correlations to all other proteins), as was previously described50.

Reporting summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
The raw data and search results are available at MassIVE: MSV000089093 
Processed data and metadata are available at https://scp.slavovlab.net/Derks_ 
et_al_2022.

code availability
Data, code and protocols are available at https://plexdia.slavovlab.net/ and  
https://github.com/SlavovLab/plexDIA. Supporting information for the single-cell 
plexDIA is available at https://scp.slavovlab.net/plexDIA.
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Extended Data Fig. 1 | plexDIA data processing by DIA-NN. The plexDIA module in DIA-NN starts the data processing by splitting the input spectral 
library or a sequence database into multiple channels, wherein query precursor ions are generated for each of the label states. In addition, a decoy 
channel is generated by considering a ‘decoy’ label with a higher mass than the actual labels, for example, +12 for mTRAQ. A preliminary precursor ion 
identification step is then carried out, wherein a best matching peak group is found, as in label-free search, for all of the precursors, from all the channels. 
These peak groups are scored by the regular neural network-based classifier implemented in DIA-NN. The most confident match is then selected, across 
all the non-decoy channels, for each charged peptide. DIA-NN then assumes that this most confident channel pinpoints the correct retention time of the 
peptide. In the process we refer to as ‘translation of identifications’, DIA-NN re-extracts the signals at this retention time for the other channels, regardless 
of whether these have been successfully matched to some peak groups during the previous step. Scoring of these re-extracted peak groups using the 
previously trained neural network classifier leads to the assignment of ‘translated q-values’, which reflect the confidence level in these identifications if 
they were made independently from translation, and can be used for downstream data filtering. As each plexDIA acquisition measures multiple samples, 
DIA-NN calculates ‘channel q-values’ that reflect the confidence in the precursors being present in specific channels. This is achieved using a target-decoy 
method as explained in Methods. Finally, DIA-NN also takes advantage of the presence of multiple channels when quantifying precursors. Here, DIA-NN 
calculates the ratios between different channels using the signal ratios for selected fragment ions at the elution apex, thus minimizing the influence of any 
interfering signals. The ‘translated’ quantities are then calculated for all the channels except the most confident one, by dividing the quantity in the latter 
by the respective ratio.
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Extended Data Fig. 2 | plexDIA analysis of proteins present only in one samples but missing from another. We sought to test identification propagation 
by plexDIA for the case when proteins are present only in some samples and not in others. To do so, we prepared a standard in which one sample (labeled 
with mTRAQ, 0) had both 0.3 µg E. coli and 0.3 µg S. cerevisiae while another (labeled with mTRAQ Δ4) had only 0.3 µg S. cerevisiae. The combined set was 
analyzed by plexDIA using the V1 method. (a) Distributions of raw MS1 precursor intensity for E. coli and S. cerevisiae precursors at channel-q-value < 0.01. 
(b) Distributions of raw MS2 quantification of precursors filtered for channel-q-value < 0.01. The red asterisks correspond to the means of the distributions.
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Extended Data Fig. 3 | plexDIA proteomic coverage and data completeness for V2. (a) Number of distinct precursors identified from 60 min active 
gradient runs for plexDIA, LF-DIA, and shotgun-DDA of mTRAQ at 1 % FDR. The DIA analysis used the V2 method, an MS2-optimized data acquisition 
cycle shown in Fig. 1e. Triplicates of each sample were analyzed (except sample C of LF-DIA, duplicates are analyzed), and the results displayed as mean; 
error bars correspond to standard error. (b) Total number of protein data points for plexDIA, LF-DIA and mTRAQ DDA at 1 % global protein FDR, (n = 3). 
(c) Venn-diagrams of each replicate for plexDIA and LF-DIA display protein groups quantified across samples A, B and C. The mean number of proteins 
groups intersected across samples A, B and C is 7,923 for plexDIA and 8,318 for LF-DIA. (d) We compute pairwise Jaccard indices to compare pairwise 
data completeness between plexDIA, LF-DIA and shotgun DDA for mTRAQ. All data were analyzed using match between runs. (e) Distributions of 
missing data between pairs of runs of either the same sample (that is, replicate injections) or between different samples.
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Extended Data Fig. 4 | comparison of proteomic overlap between our runs to a high-quality DIA dataset Navarro et al. DIA runs (including raw data 
from Navarro et al.) were searched with DIA-NN using match between runs. Results indicate that the data completeness from LF-DIA in this study is 
comparable to other high quality LF-DIA datasets.
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Extended Data Fig. 5 | plexDIA quantitative accuracy for MS2-optimized data acquisition (V2). As demonstrated with the MS1-optimized method in 
Fig. 3 of the main text, here we show quantitative accuracy of plexDIA using MS2-optimized data acquisition—specifically, we only show data from the 
second run of a triplicate set. (a) The number of protein groups quantified in both samples A and B is shown with barplots. plexDIA quantified 7,610 PGs, 
LF-DIA 9,387 PGs, and intersected between plexDIA and LF-DIA was 5,967 PGs. These 5,967 PGs were plotted to compare quantitative accuracy between 
plexDIA and LF-DIA for in-common protein groups. To improve visibility, the scatter plot x and y axes were set to display data points between 0.25% and 
99.75% range. (b) Same as (a), but for samples A and C; human proteins were excluded because they compare two different human cell types. (c) Same 
as (b), but for samples B and C. (d) Absolute protein ratio errors were calculated for samples A/B, A/C and B/C and combined to compare ratio errors for 
samples within a plexDIA run (for example, run2 A / run2 B) to samples across runs (for example, run1 A /run2 B) with plexDIA. (e) Absolute precursor 
ratio errors were calculated for samples A/B, A/C and B/C and combined to compare MS2-quantified ratio errors for C-terminal lysine precursors and 
C-terminal arginine precursors. Boxplots: The box defines the 25th and 75th percentiles and the median is marked by a solid line. Outliers are marked as 
individual dots outside the whiskers. All data shown are from (n = 1) representative replicate.
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Extended Data Fig. 6 | Quantitative accuracy for DIA replicates using V1. Similar to main Fig. 3, we display the results from the other replicates for a total 
of (n = 3) replicates. (a) Figures are the same as shown in Fig. 3 of the main text with the exception that this shows the first replicate of plexDIA and the 
first replicate of samples A, B and C for LF-DIA. (b) Same as (a), but for the third replicate of plexDIA and LF-DIA, samples A, B and C. Boxplots: The box 
defines the 25th and 75th percentiles and the median is marked by a solid line. Outliers are marked as individual dots outside the whiskers. Panel a shows 
data from (n = 1) replicate and panel b shows data from another (n = 1) replicate for a total of (n = 2) replicates shown in this figure.
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Extended Data Fig. 7 | Quantitative accuracy and repeatability across different plexDIA sets and labels. (a) Relative protein levels between samples A, 
B and C estimated from samples analyzed in different plexDIA sets, that is, out-of-set quantification. The quantitative accuracy between sets (and thus 
runs) is comparable to the set accuracy shown in Fig. 3. The display is the same as shown in main Fig. 3, but the protein ratios are estimated across runs 
(for example, run 1 A / run 2 B); LF-DIA is showing protein ratios for the 2nd replicate of samples A, B and C. (b) Same as (a), but for samples A and C; 
H. sapiens proteins were not analyzed because they are from distinct cell types. (c) Same as (b) but for samples B and C. All data shown in panels a–c are 
from (n = 1) representative replicate. Boxplots: The box defines the 25th and 75th percentiles and the median is marked by a solid line. Outliers are marked 
as individual dots outside the whiskers. (d) Quantitative repeatability of plexDIA across across different labels. Protein CVs were estimated for the same 
samples labeled with the same label (as in main Fig. 4) or for the same sample labeled with different labels in different runs for example, run 1, Δ0, sample 
A & run 2, Δ4, sample A & run 3, Δ8, sample A. Both distributions contains CV for the same set of (n = 15,158) sample-specific protein data points per 
condition (Same Labels or Different Labels). The median CV when using the same label was 0.110 while the label swap had a median CV of 0.148.
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Extended Data Fig. 8 | plexDIA missing data in single cells and negative controls. Percent of precursors with no MS1-level quantitation per single cell or 
negative control. Single cells were required to have <60% missing data to be included in downstream analysis.
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Extended Data Fig. 9 | Single-cell PcA colored by mtRAQ label. Rather than colors corresponding to a cell type as performed in Fig. 6p, here colors 
correspond to which mTRAQ label was used to tag the single cells. This is performed to check whether labeling-induced biases affect clustering of 
single-cells; here there appears to be little to no effect.
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Extended Data Fig. 10 | Relative protein abundances for each species per label. Distribution of relative protein abundance of each species across labels. 
The Δ0, Δ4 and Δ8 samples were pooled and used for quantitative benchmarking of plexDIA.
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