
Droplet sample preparation for single-cell proteomics
applied to the cell cycle

Andrew Leduc,1,2 R. Gray Huffman,1,2 & Nikolai Slavov1,2,3,�

1Department of Bioengineering, Northeastern University, Boston, MA 02115, USA
2Barnett Institute, Northeastern University, Boston, MA 02115, USA
3Department of Biology, Northeastern University, Boston, MA 02115, USA
� Correspondence: nslavov@alum.mit.edu or nslavov@nor theastern.edu
∈ Data, code & protocols: scope2.slavovlab.net/nPOP

Many biological functions, such as the cell division cycle, are intrinsically single-cell processes
regulated in part by protein synthesis and degradation. Investigating such processes has
motivated the development of single-cell mass spectrometry (MS) proteomics. To further
advance single-cell MS proteomics, we developed a method for automated nano-ProteOmic
sample Preparation (nPOP). nPOP uses piezo acoustic dispensing to isolate individual cells
in 300 picoliter volumes and performs all subsequent preparation steps in small droplets on
a hydrophobic slide. This allows massively parallel sample preparation, including lysing,
digesting, and labeling individual cells in volumes below 20 nl. Single-cell protein analysis
using nPOP classified cells by cell type and by cell cycle phase. Furthermore, the data allowed
us to quantify the covariation between cell cycle protein markers and thousands of proteins.
Based on this covariation, we identify cell cycle associated proteins and functions that are
shared across cell types and those that differ between cell types.

Introduction

Single-cell measurements are essential for understanding biological systems composed of different

cell types1,2. Recent advances in single-cell RNA3 and protein4,5 analysis methods have facilitated

the study of single-cell heterogeneity at unprecedented scale and depth. These emerging single-

cell methods have the potential to go beyond classifying cell types, enabling the characterization

of intrinsically single-cell processes6, such as the cell division cycle (CDC). Indeed, single-cell

analysis of the CDC obviates the need to synchronize cell populations and the associated perturba-

tion artifacts7–11. Such analysis offers the possibility to explore, without perturbation artifacts, the
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coordination of the cell cycle with metabolism and cell growth that had been observed in synchro-

nized cell cultures12–14. Crucial aspects of the CDC are regulated post-transcriptionally by protein

synthesis and degradation,9,15,16 and their characterization demands single-cell protein analysis6.

Traditionally, single-cell proteomic analyses have been performed by using fluorescent proteins

or affinity reagents17. While these approaches are powerful9,10, mass spectrometry (MS) has the

potential to increase the specificity and depth of single-cell protein quantification1,5,6. For decades,

MS has been a powerful tool for measuring the relative abundance of thousands of proteins in bulk

samples consisting of thousands of cells or more2,18–20. Advances in sample preparation, mass-

spectrometry data acquisition, and data analysis have enabled quantifying thousands of proteins in

single cells as reviewed by ref.4,5.

Bulk samples are often prepared for liquid chromatography tandem MS analysis by using rel-

atively large volumes (hundreds of microliters) and chemicals (detergents or chaotropic agents

like urea) that are incompatible with MS analysis and require removal by cleanup procedures.

The large volumes and cleanup procedures entail sample losses that may be prohibitive for small

samples, such as single mammalian cells1,5,17. Thus, numerous methods have been developed for

preparing sub-microgram protein samples21–24 and single-cell samples25–34. To enable some degree

of parallel processing, some methods have been automated using multiwell plates31,34. Preparing

small samples often uses sophisticated custom-made equipment26–30. While cleanup may result

in significant sample losses, some methods, such as SP321,22 and iST23, perform cleanup very ef-

ficiently even with submicrogram samples and might be used for single-cell analysis albeit such

applications are not extensively tested.

We sought to develop a miniaturized and massively parallel sample preparation method to im-

prove single-cell protein quantification and to use it for cell cycle analysis. Specifically, we aimed

to develop a widely accessible, robust, and automated method that further reduces sample prepara-

tion volumes to a few nanoliters. Our goal was to carry out parallel sample preparation of many sin-

gle cells to increase the size of experimental batches and thus reduce batch effects35–37. To achieve

high precision, we aimed to avoid moving the samples during the preparation stage so that we could

repeatedly dispense tiny volumes of reagents to the same droplets. To achieve these goals, we used

the the CellenONE cell sorting and liquid handling system and developed nano-PrOteomic sample
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Preparation (nPOP), which allowed a 100-fold reduction of the sample volumes over the Minimal

ProteOmic sample Preparation (mPOP) method34,38–40. Reducing sample volumes directly enabled

more comprehensive CDC analysis than was previously possible with mPOP34. Integrating nPOP

with the Single Cell ProtEomics by Mass Spectrometry (SCoPE2) workflow allowed us to classify

cells based on the CDC phase. Furthermore, joint analysis of CDC proteins in U-937 and HeLa

cells showed similarities and differences between the cell cycle progression of these cell types.

Results

A challenge for any small volume sample preparation method is choosing a suitable method for cell

lysis. As demonstrated previously, we sought to obviate clean-up by avoiding MS-incompatible

chemicals34,40. In carrying out the lysis on an open surface, we needed to control for several

additional factors. First, the precision dispensing of the CellenONE relies on returning to the same

XY coordinates. Since moving the surface reduces the accuracy of the dispensing reagents to the

single-cell samples, we design nPOP without any slide movements. This required the cell lysis

to be performed at room temperature on open surface. To satisfy these conditions, we sought to

use 90 % dimethyl-sulfoxide (DMSO) for cell lysis. The low vapor pressure of DMSO at room

temperature allows for precise control of evaporation. To test the efficacy of DMSO for cell lysis,

we conducted bulk experiments to compare DMSO lysis to the more standard 6M urea lysis.

Using DMSO for Cell Lysis

We compared the efficiency of extracting proteins between DMSO and urea using SILAC quan-

tification as shown in Fig. 1a. Equal amounts of light and heavy U-937 cells were lysed with Urea

or DMSO. The samples were then diluted and combined for digestion. These results suggest that

DMSO allows for efficient cell lysis without detectable biases against proteins originating from

different cell compartments, Fig. 1a. .
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a

Efficiency of protein extraction

b

Accuracy of protein quantification

Figure 1 | Evaluating the efficiency of protein extraction by DMSO cell lysis. (a) Equal number of U-937 cells labeled
with “Light” and “Heavy” isotopes via SILAC were lysed with urea or DMSO, diluted, and combined for digestion.
The SILAC ratios for proteins from different cellular compartments show comparable protein recovery for DMSO and
urea cell lysis. (b) Equal number of SILAC labeled “Light” Jurkat and “Heavy” U-937 cells were combined, and the
mixed sample was then divided for cell lysis either by urea or or by DMSO. The agreement between the SILAC ratios
from the two methods supports the use of DMSO lysis for quantitative protein analysis.

Next, we evaluated the accuracy of relative protein quantification with DMSO lysis. We lysed

U-937 monocytes and Jurkat T-cells with both DMSO and urea and compared the protein ratios

estimated from the cells lysed with DMSO and with urea, Fig. 1c. U-937 monocytes cultured

in heavy SILAC media and Jurkat T-Cells cultured in standard media were combined in equal

amounts and lysed with either 90 % DMSO or 6M urea as shown in Fig. 1c. The correlation be-

tween the protein ratios estimated for each condition suggests that DMSO lysis is compatible with

accurate protein quantification, Fig. 1d. This gave us further confidence that DMSO lysis is well

suited for miniaturizing sample preparation on an open surface without using MS-incompatible

chemicals.
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nPOP Workflow

The workflow for nPOP sample preparation includes cell isolation, cell lysis, protein digestion,

peptide labeling, and sample pooling as illustrated in Fig. 2a. Sample preparation starts with

dispensing droplets of 4 nl DMSO for cell lysis. The droplets are organized as regular grids

(Fig. 2b) to facilitate their pooling at the end of the experiment. The second step of nPOP is the

isolation and dispensing of single cells into the DMSO droplets. Each single cell is isolated in a 0.3

nl droplet of PBS and added to a DMSO droplet for lysis, Fig. 2a. After 20 minutes for cell lysis,

a perimeter of 12 nl droplets of water (for maintaining high local humidity) is deposited around

the four sample arrays. The next nPOP step is protein digestion into peptides by the addition of

trypsin with HEPES buffer. The addition brings the total volume to 13.5 nl, Fig. 2a. Samples are

digested by 75 ng/µl trypsin for 5 hours. To further control evaporation, nPOP uses a humidifier

to keep relative humidity inside the CellenONE at 75 %. During digestion, the temperature of

the slide is dynamically controlled to 1 oC above the dew point, around 17 oC. After digestion,

humidity is reduced, and the slide is brought to room temperature for labeling. The single cell

droplets dry down on the slide to volumes of approximately 4 nl before labeling. TMT labels

dissolved in DMSO are dispensed in volumes of 20 nl to the single cell droplets. Dissolving labels

in DMSO is a distinctive aspect of nPOP that facilitates the manipulation of sub-nanoliter droplets

of TMT solution. The most commonly used solvent for TMT, acetonitrile, is difficult to handle

with CellenONE due to its density, volatility, and low surface tension. After samples are labeled

for one hour at room temperature, labeling is quenched with two sequential 20 nl additions of 5 %

hydroxylamine. Each addition is followed by a 20-minute incubation.

To pool all single-cell samples into a set, 1 µl of water is dispensed by a pipette onto each array

of labelled samples. Samples are then pipetted directly into injection vial glass inserts containing

isobaric carrier and reference previously prepared using the mPOP protocol34. To improve the re-

covery of labeled peptides, the footprint of each array is washed by 4 µl of acetonitrile, which is

collected and added to the corresponding combined set. This wash is option and used to maximize

the recovery of labeled peptides from the slide.
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a

b c

Figure 2 |Workflow of nano-PrOteomic sample Preperation (nPOP) (a) A schematic of the nPOP sample preparation
method illustrates the steps of cell lysis, protein digestion, peptide labeling with TMT, and quenching with two addi-
tions of hydroxylamine. These steps are performed in parallel for all single cells and take place in small droplets. (b)
A representative field of droplets post trypsin addition. Droplets with single cells are clustered in groups of 13, the
number of cells labeled and combined into one SCoPE2 sets using TMTpro. The single-cell droplets are surrounded
by a perimeter of water droplets for maintaining high local humidity. (c) Total ion current chromatograms from three
runs demonstrate low contaminants and consistent chromatography.

Single-cell protein analysis with nPOP

nPOP is a general sample preparation method that can be used for either label-free MS analysis or

multiplexed MS analysis as part of existing workflows reviewed by ref.4,5. Here, we demonstrate

sample preparation by nPOP as part of the SCoPE2 protocol38,39. Specifically, we replaced Min-

imal ProteOmic sample Preparation (mPOP) module34 with nPOP and used all other modules of

the SCoPE2 workflow, including an isobaric carrier41, Data-Driven Optimization of Mass Spec-

trometry (DO-MS)42, Data-driven Alignment of Retention Times for IDentification (DART-ID)43,

and the SCoPE2 data analysis pipeline38,44,45.
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To evaluate the performance of nPOP for single-cell analysis, we applied it to 176 single cells

of two cell types, Hela cells and U-937 monocytes. The sample preparation was performed on

two different days so that the data may reflect day-specific batch effects. The resulting SCoPE2

sets were run using less than 24 hours of instrument time, and the MS data were processed and

evaluated via the SCoPE pipeline44. As a first benchmark for contaminant signal, we evaluated

the RI intensity in negative controls. These correspond to droplets that did not receive a single

cells, and their RI intensities reflect cross-labeling and nonspecific background noise38,39. The RI

intensities in two representative negative controls shown in Fig. 3a,b are mostly absent or very

low, indicating that background noise is low for samples prepared with nPOP. The RI intensities

for single cells also show that, as expected and previously observed39, peptides from Hela cells are

more abundant than peptides from U937 cells, likely reflecting the different cell sizes.

To further evaluate the single-cell data, the SCoPE2 pipeline calculates the coefficient of vari-

ation (CV) of relative peptide levels belonging to the same protein. The relatively low CV values

indicate that protein quantification from different peptides is internally consistent, Fig. 3c. Fur-

thermore, the small spread of the distribution for the median CVs indicates that each cell is treated

consistently by the automated sample preparation technique.

Next, we performed principal component analysis (PCA) of the single-cell protein dataset using

all quantified proteins, Fig. 3d. The PCA indicates two distinct clusters of cells. The clusters

correspond the cell types and separate along the first principal component (PC1), which accounts

for 73 % of the variance, Fig. 3d.To further validate that the cell type separation is driven by

accurate quantification of proteins (rather than by secondary factors such as cell size difference

(Fig. 3a,b) or missing data), we included bulk samples of Hela cells and monocytes in the PCA.

Similar to previous analysis38,39,46,47, the bulk samples clustered with the corresponding single cells.

This clustering indicates that the single-cell protein quantification is consistent with the proteomic

measurements of established bulk methods.
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Figure 3 | Reporter ion intensities in single cells and in negative controls. The reporter ion intensities for two
representative SCoPE2 sets prepared with nPOP are shown in (a) and (b). The panels show distributions of reporter
ion intensities relative to the corresponding isobaric carrier for the set. RI intensities are mostly absent from negative
control wells, which contains all reagents but not a single cell. (c) The consistency of protein quantification is estimated
as the coefficient of variation (CV) of the relative levels of peptides originating from the same protein. The median CVs
per cells are tightly distributed, suggesting high consistency of sample preparation. (d) Principal component analysis
separates single-cell and bulk samples corresponding to HeLa cells or to U937 monocytes. The single cells and
bulk samples of 100 cells cluster together by cell type, indicating that the relative protein quantification is consistent
between single-cell and bulk samples.

Cell Cycle Analysis

We next sought to identify biological processes with concerted CDC dynamics that are common

and those that are different between the cell division cycles of an epithelial cell line (HeLa) and

a monocytic cell line (U-937). As a first step towards this analysis, we evaluated the potential to

classify individual cells by their cell cycle phase. We intersected the list of confidently identified

proteins in our data with a list of genes previously found to be CDC periodic48. We then pro-

jected the proteomes of both Hela and U937 cells into a joint 2-dimensional space (Fig. 4) defined
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a

b
Cell-type independent functions

c
Cell-type dependent functions

Figure 4 | Covariation of proteins and biological processes with the cell cycle (a) Common Principal Component
Analysis (CPCA) of HeLa and U-937 cells in the space of CDC periodic genes. Cells in each CPCA plot are colored
by the mean abundance of proteins annotated to M/G1, S, and G2 phases based on previous analysis48. (b) The
boxplots display distributions for correlations between the phase markers and proteins from the large ribosomal subunit
assembly GO term. The difference between these distributions was evaluated by 1-way ANOVA analysis to estimate
statistical significance, p < 0.0002. The distributions for other GO terms that covary in a similar way between the two
cell lines are summarized with their medians plotted as a heatmap. (c) Similar analysis and display as in panel a was
used to visualize GO terms whose covariation with the CDC is cell type specific. Shown GO terms are at FDR < 5%.

by common principal component analysis (CPCA); see methods. The CPCA was performed as

previously described38,49, and each cell was color-coded based on the mean abundance of protein

markers for M/G1, S, and G2 phase. The cells from both cell types cluster by CDC phase (Fig. 4a),

which suggests that the data capture CDC related protein dynamics.

Next we focused on identifying proteins that covary with the CDC periodic proteins used for

defining CDC phases in Fig. 4a. To identify such covariation, we first estimated a marker vector

for each cell cycle phase as the median level of marker proteins for that phase. The phase marker
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vectors were correlated to the measured protein abundances of all proteins quantified across many

single cells. Many proteins correlate strongly to the phase marker vectors, and for 34 of these

proteins the correlations are statistically significant, sugesting that these proteins are CDC periodic.

For example, many ribosomal proteins, such as RPL17 and RPL26, correlate positively to the G1

phase markers (ρ = 0.4; p < 10−6), suggesting that these proteins peak in abundance during the

G1 phase. Similarly, the Adenomatous polyposis coli protein correlates (ρ = 0.7) to the S phase

markers, suggesting that this proteins peaks in S phase. This analysis also discovered proteins

peaking in G2 phase, such as the spliceosome RNA helicase DDX39B.

To increase the statistical power of our covariation analysis, we next focused on the covaria-

tion of phase markers and proteins with similar functions as defined by the gene ontology (GO).

Specifically, we compared the distributions of correlations between the 3 phase marker vectors and

all quantified proteins from a GO term, as shown with the boxplots in Fig. 4b. For ribosomal large

subunit assembly, the distributions of correlations differ significantly between the CDC phases,

and this phase-specific covariation is similar for the two cell types, Fig. 4b. Many other GO terms

show covariation to the phase markers that is similar for the two cell types, and instead of dis-

playing the boxplot distributions for all of them, we summarized the distributions of correlations

with their medians displayed as a heatmap, Fig. 4b. Such functions with shared covariation include

translation, transcription, and cytoskeleton reorganization.

We performed similar protein set enrichment analysis on the correlations between proteins and

phase markers to identify biological functions that covary with the cell cycle phases in a different

way for the two cell types, Fig. 4c. Such functional groups of proteins that differed in CDC

covariation include the regulation of glucose metabolism, pentose-phosphate shunt, and histone

methylation, Fig. 4c. These functions highlight metabolic differences between the cell cycle for

the two cell types. Immune related GO terms, such as T-cell activation and defense response

to Gram-negative bacteria, also differed, which might reflect the immune specialization of U937

cells.
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Discussion

Existing single-cell omics methods excel at classifying cells by cell type. However, the regulatory

dynamics resulting in cell to cell variability within a cell type are more challenging to analyze. To

support such analysis, we introduce a highly parallel sample preparation that allows for reduced

volumes and increased consistency of single-cell proteomic sample preparation.

To maximize access and flexibility, nPOP used only commercially available equipment and

prepares single cells on an open surface that can be pragmatically reconfigured and adopted to

different experimental designs. The open environment also obviates all sample movements and

maximizing the consistency and precision of the sample preparation. The open layout using a

hydrophobic slide can scale up to simultaneously preparing thousands of single cells. Furthermore,

nPOP is amenable to different coatings or hydrophobic surfaces which have the potential to further

improve recovery. While nPOP performed very well in our experiments, we have not tested it

with samples contaminated by chemicals undermining MS analysis. Such samples are likely to be

better handled by SP321,22 and iST23.

nPOP allowed for deeper single cell proteomic analysis of the cell division cycle than our

previous sample preparation method, mPOP34. The data allowed us to identify new proteins and

functional groups of proteins associated with the cell cycle without the artifacts associated with

synchronizing cell cultures11. These initial results demonstrate the feasibility of inferring co-

regulation of biological processes from single-cell proteomics measurements.

Supplemental website Data and other resources can be fount at scope2.slavovlab.net/nPOP
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Methods

Cell Culture Hela cells were grown as adherent cultures in DMEM with high glucose (Sigma-

Aldrich D5796), supplemented with 10 fetal bovine serum (FBS, Millipore Sigma F4135) and 1

penicillin-streptomycin (pen/strep, ThermoFisher 15140122). U-937 and Jurkat cells were grown

as suspension cultures in RPMI medium (HyClone 16777-145) supplemented with 10 fetal bovine

serum (FBS, Millipore Sigma F4135) and 1 penicillin-streptomycin (pen/strep, ThermoFisher

15140122). Cells were passaged when a density of 106 cells/ml was reached, approximately every

two days.

Mass spectrometry analysis MS analysis was designed and performed according to the SCoPE2

guidelines and protocol38,39,41. Specifically, the single cells pooled into SCoPE2 sets were sepa-

rated via online nLC on a Dionex UltiMate 3000 UHPLC; 1 µl out of 1.2 µl of sample was loaded

onto a 25cm x 75 µl IonOpticks Aurora Series UHPLC column (AUR2-25075C18A). Buffer A

was 0.1 % formic acid in water and buffer B was 0.1% formic acid in 80 acetonitrile / 20% water.

A constant flow rate of 200nl/min was used throughout sample loading and separation. Samples

were loaded onto the column for 20 minutes at 1% B buffer, then ramped to 5 B buffer over two

minutes. The active gradient then ramped from 5% B buffer to 25% B buffer over 53 minutes.

The gradient then ramped to 95% B buffer over 2 minutes and stayed at that level for 3 minutes.

The gradient then dropped to 1% B buffer over 0.1 minutes and stayed at that level for 4.9 min-

utes. Loading and separating each sample took 95 minutes total. All samples were analyzed by

a Thermo Scientific Q-Exactive mass spectrometer from minute 20 to 95 of the LC loading and

separation process. Electrospray voltage was set to 1.8 V, applied at the end of the analytical col-

umn. To reduce atmospheric background ions and enhance the peptide signal-to-noise ratio, an

Active Background Ion Reduction Device (ABIRD, by ESI Source Solutons, LLC, Woburn MA,

USA) was used at the nanospray interface. The temperature of ion transfer tube was 250 oC and

the S-lens RF level was set to 80. After a precursor scan from 450 to 1600 m/z at 70,000 resolving

power, the top 7 most intense precursor ions with charges 2 to 4 and above the AGC min threshold

of 20,000 were isolated for MS2 analysis via a 0.7 Th isolation window with a 0.3 Th offset. These

ions were accumulated for at most 300ms before being fragmented via HCD at a normalized colli-

sion energy of 33 eV (normalized to m/z 500, z=1). The fragments were analyzed by an MS2 scan
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with 70,000 resolution. Dynamic exclusion was used with a duration of 30 seconds with a mass

tolerance of 10ppm.

DMSO and urea lysis sample preparation Jurkat cells and U-937 cells cultured in heavy SILAC

media (containing +10Da Arg and +8Da Lys) were washed and re-suspended in PBS at 20,000

cells per µl. Two solutions of equal cell count containing Jurkat and U-937 cells were made mixed

in 1:1 ratios. One sample was lysed by diluting cells in 90 % DMSO and the other was lysed in 6M

urea. The DMSO cell lysate was diluted to a concentration of 33 % DMSO and urea lysate was

diluted to 0.5 M. Both solutions were digested in 15 ng/µl of trypsin for 12 hours. Each sample

was then desalted using C18 stage tips and run using data dependant acquisition.

Sample layout and Experimental Design nPOP reactions are carried out on the open surface

of a fluorocarbon coated glass slide. The layout was designed such that cells for 4 SCoPE2 sets

are prepared together in a 2 by 2 grid. Two grids were prepared per sample preparation for a

total of 8 SCoPE2 sets. The droplet geometry was optimized to keep droplets from the same set

close in proximity but prevent reaction volumes from merging. Each area consists of 13 single cell

reaction volumes, containing 6 U937 cells, 6 Hela cells, and one negative control droplet. 96 single

cells were prepared per day. Negative control droplets in this context are defined as droplets that

experience all sample preparation steps, except that no single cell is dispensed to these droplets.

This layout of droplets is flexible can be easily adopted to different configurations or larger array

sizes.

Reagent Handling with CellenONE The CellenONE is set up with two nozzles. One nozzle

handles cell suspensions. The other tip handles organic solvents and protein solutions. Reagents

are loaded into a 384 well plate in volumes of 30 µl. When aspirating protein solutions, make sure

to aspirate 20 µl to ensure the mixture is not diluted with system water. When dispensing DMSO,

it is important to shut off humidifyer. This allows leftover DMSO on the tip to evaporate quickly

so dispensing is not effected. After each sample preparation, tips are washed methanol and cleaned

under sonication to remove built up material from inside of tip and ensure optimal performance.

Carrier and reference channel preparation in bulk The isobaric carrier consisting of a 1:1

mixture of Hela and monocyte cells was prepared in bulk and aliquoted into carriers corresponding

to 200 cells each. A single cell suspension of about 22,000 cells was transferred to a 200 µl PCR
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tube (USA Scientific 1402-3900) and then processed via the mPOP sample preparation method34.

The reference channel was made from the same sample.

nPOP Sample Preparation To lyse cells, cells are dispensed into pools of DMSO. 4 nl droplets

of DMSO are dispensed over the grid in the location of each reaction volume. Single cells are

then dispensed in each each reaction volume. Cells are incubated in the 4 nL DMSO droplets for

20 minutes. After lysis, a solution containing trypsin and HEPES buffer is added to each reaction

volume, for a final concentration of 100 ng/µl of trypsin and 1 mM HEPES and total volume of 14

nl.

The humidifier and cooling system is then turned on to prevent droplet evaporation. Relative

humidity inside the CellenONE is set to 72 % and the water chiller temperature is set to dynam-

ically chase one degree above the dew point. Mass spectrometry grade water is dispensed in a

perimeter surrounding each grid to provide further control for the local humidity of the reaction

volumes. The system is set to refresh the water droplet perimeter to control local humidity every

20 minutes for 5 hours as proteins digest.

After proteins have digested for 5 hours, the humidity and cooling controls are turned off. 20

nL of TMT labels suspended in DMSO and concentrated at 28mM are then dispensed to each re-

action volume using the organic dispensing tip. When dispensing labels, humidifier was turned off

to assist with dispensing. After single cells are left to label for 1 hour, 20 nL of 5 % hydroxylamine

solution is added to each reaction volume to quench labeling reaction. Humidity and cooling con-

trols are returned to previous settings for quenching labeling reaction. After 20 minutes, another

addition of 30 nL of 5 % hydroxylamine is added.

After quenching proceeds for another 20 minutes, samples are pooled on plate in 2.5 µl of a 50

% 0.1 % formic/acetonitrile solution added via hand pipette. Samples are collected and added to a

single glass HPLC insert (ThermoFisher C4010-630) and dried down to dryness in a speed-vacuum

(Eppendorf, Germany) and either frozen at −80oC for later analysis or immediately reconstituted

in 1.2 µl of 0.1 % formic acid (ThermoFisher 85178) for mass spectrometry analysis.

Analysis of raw MS data Raw data were searched by MaxQuant19,50 1.6.0.16 and 1.6.2.3 against

a protein sequence database including all entries from the appropriate mouse or human SwissProt

database (downloaded July 15, 2018 and July 30, 2018, respectively) and known contaminants such
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as human keratins and common lab contaminants. MaxQuant searches were performed using the

standard work flow51. We specified trypsin specificity and allowed for up to two missed cleavages

for peptides having from 5 to 26 amino acids. Methionine oxidation (+15.99492 Da) and protein N-

terminal acetylation (+42.01056 Da) were set as a variable modifications. Carbamidomethylation

was disabled as a fixed modification. All peptide-spectrum-matches (PSMs) and peptides found

by MaxQuant were exported in the msms.txt and the evidence.txt files. SILAC data was searched

in two batches (by date acquired) with match between runs enabled, using the default settings.

Single-cell filtering and normalization The single-cell data were processed and normalized by

the SCoPE2 pipeline38,39. This pipeline is also implemented by the scp Bioconductor package37,45.

Briefly, single cells with suboptimal quantification were removed prior to data normalization and

analysis based on objective criteria: The internal consistency of protein quantification for each

single cell was evaluated by calculating the coefficient of variation (CV) for proteins (leading

razor proteins) identified with over 5 peptides for that cell. The coefficient of variation is defined

as the standard deviation divided by the mean. The CVs were computed for the relative reporter ion

intensities, i.e., the RI reporter ion intensities of each peptide were divided by their mean resulting

in a vector of fold changes relative to the mean. Cells that fell outside the sharp CV distribution

centered around 0.27 were removed from analysis with a threshold of 0.35. Data was normalized

as by procedure outlined by Specht et al.38,44.

Principal component analysis for single cell data sets From the protein x single cell matrix,

all pairwise protein correlations (Pearson) were computed. Thus, for each protein, there was a

computed vector of correlations with a length the same as the number of rows in the matrix (number

of proteins). The dot product of this vector with itself was used to weight each protein prior to

principal component analysis. The principal component analysis was performed on the correlation

matrix of the weighted data.

SILAC data analysis When comparing relative protein levels in Jurkat and U-937 cells, SILAC

ratios for peptides were computed by taking dividing each channel by its median, and then taking

the ratio of the light and heavy channels. When comparing absolute abundances between heavy

and light U-937 cells to measure efficiency of extraction, label swap experiments were ran so

that both lysis conditions were measured with both heavy and light labels. The raw intensities
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for corresponding lysis methods were averaged and the ratio between different lysis methods was

plotted.

Common Principal Component Analysis To jointly analyze the cell cycle protein from HeLa and

U-937 cells, we performed Common Principal Component Analysis (CPCA) in the space of 20 cell

cycle dependant(CDC) proteins using the Krzanowski method49. Specifically, we computed the

correlation matrices of CDC proteins in the U-937, Ru, and in the HeLa cells, Rh, and determined

the eigenvector with the largest and second largest eigenvalue of the matrix Ru+Rh. Each matrix

of proteins by cells was then multiplied by the common principal components to obtain two vectors

of length number of cells. These vectors were then plotted against each other to project cells into

a joint space as seen in Fig. 4a.

Identifying proteins that covary with CDC markers To identify proteins that covary with the

phase marker vectors, we correlated the phase marker vectors to the measured protein levels. To

minimize cell-type specific effects, we converted the levels of each proteins within a cell type to

z-scores and then combined with the corresponding vector of z-scores from the other cell type.

These combined vectors were correlated to the combined phase marker vectors using Spearman

correlation.

Protein Set Enrichment Analysis To identify functionally coherent sets of proteins that covary

with the CDC phase markers, we correlated each protein to the median abundance of CDC pro-

teins that showed similarity between HeLa and U-937 cells as plotted in Fig. 4a. The resulting

correlation vectors were analyzed by protein set enrichment analysis similar to previously reported

analysis52. In the case of cell-type specific co-variation, we also used empirical bootstrapping to

estimate the Z-score corresponding to each correlation, and then compared the distributions of Z-

scores via ANOVA for estimating the statistical significance. Only GO Terms for which we had

least 4 proteins were analyzed. We used ANOVA to estimate if the variance among the correla-

tions of the proteins from the GO term and the CDC phase markers can be explained by the CDC.

We then used the Benjamini-Hochberg method to estimate the corresponding q values (FDR; false

discovery rare) for each GO term. Among the set of GO terms within 5 % FDR, we displayed in

Fig. 4 the 20 GO terms whose correlations to the CDC phase markers was most similar or most

different between the 2 cell lines.
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