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In Brief
Single-cell proteomics will drive
the next wave of single-cell
biology. This requires broad
adoption of existing methods,
the application of rigorous
quality control standards, and
the continuous advancement of
the technology. The
advancement will be driven by
numerous innovations, including
highly parallelized analysis, and
will increase the throughput,
quantitative accuracy, and the
accessibility of the single-cell
proteomics.
Highlights
• Wide adoption of single-cell proteomics can empower biology.• Protocols for single-cell proteomics by MS are ready for broad adoption.• Parallelizing the analysis offers multiplicative throughput gains.• Quantity controls and community standards are essential.• Single-cell proteomics offers unique perspective on biology.
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PERSPECTIVE
Scaling Up Single-Cell Proteomics
Nikolai Slavov*
Single-cell tandem MS has enabled analyzing hundreds of
single cells per day and quantifying thousands of proteins
across the cells. The broad dissemination of these capa-
bilities can empower the dissection of pathophysiological
mechanisms in heterogeneous tissues. Key requirements
for achieving this goal include robust protocols performed
on widely accessible hardware, robust quality controls,
community standards, and automated data analysis
pipelines that can pinpoint analytical problems and facili-
tate their timely resolution. Toward meeting these re-
quirements, this perspective outlines both existing
resources and outstanding opportunities, such as paral-
lelization, for catalyzing the wide dissemination of quan-
titative single-cell proteomics analysis that can be scaled
up to tens of thousands of single cells. Indeed, simulta-
neous parallelization of the analysis of peptides and single
cells is a promising approach for multiplicative increase in
the speed of performing deep and quantitative single-cell
proteomics. The community is ready to begin a virtuous
cycle of increased adoption fueling the development of
more technology and resources for single-cell proteomics
that in turn drive broader adoption, scientific discoveries,
and clinical applications.

Single-cell MS analysis of proteins has made rapid gains
over the last few years (1, 2). This growth will continue since
major opportunities for future technological and methodo-
logical advancements ensure that innovations will continue to
drive analytical capabilities (3). Indeed, single-cell MS detects
peptide ions with high sensitivity, but the proteome coverage
of current methods is limited by time constraints (4). The
relaxation of these constraints by innovations in data acqui-
sition and interpretation may increase proteome coverage by
10-fold (4). At the same time, existing single-cell proteomics
MS methods are reaching a maturity level that should allow
their broader adoption. This perspective focuses on key steps
needed to achieve broader adoption of single-cell proteomics
by tandem MS and to scale up its throughput to tens of
thousands of single cells analyzed at affordable cost and time.

BIOLOGICAL SYSTEMS AND QUESTIONS DEMANDING SINGLE-CELL
PROTEOMICS

Single-cell analysis is trendy, but it is not always essential. It
may not be essential for model systems consisting of a mostly
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homogeneous cellular population or consisting of well-defined
discrete subpopulations, which can be isolated based on
reliable markers. However, such model systems are rare,
especially when working with multicellular organisms and
in vivo samples. Indeed, even isogenic cell populations may
exhibit significant biological heterogeneity (5–7). If a cellular
system is assumed to be homogeneous and analyzed by bulk
methods, the resulting data cannot reject the assumption of
homogeneity even when it is incorrect and misleading (1). For
these reasons, single-cell analysis is increasingly the method
of choice, especially when working with complex biological
tissues (5, 8–10). For decades, protein analysis of single
mammalian cells has been performed using affinity reagents
(5) while the power of MS to achieve deep proteome analysis
has been limited to quantifying the average protein levels in
samples consisting of many (often heterogeneous) cells
(11–14). However, increasingly, MS laboratories are suc-
ceeding in bringing the power of MS analysis to quantitative
protein analysis of single mammalian cells (2, 15).
Single-cell proteomics is rapidly developing in the wake of

single-cell RNA-Seq (scRNA-Seq), which prompts the ques-
tion of when to use scRNA-Seq and when to use single-cell
proteomics. The simple answer is to measure RNAs if inter-
ested in RNAs and measure proteins if interested in proteins.
This simple answer is complicated by hopes that mRNA levels
are reliable surrogates for protein levels (16). The degree to
which mRNA levels may be used as surrogates for protein
levels has received considerable attention and borne out
controversy. The controversy stems in part from studies not
accounting for measurement error. Yet, measurement errors
may contribute significantly to the measured difference be-
tween RNA and protein abundances, and this contribution
must be explicitly accounted for (17, 18). These errors stem
from technical variability in sample collection, preparation, and
measurement and can be empirically estimated from inde-
pendent measurements (18). After accounting for differences
because of measurement noise, mRNA levels remain poor
substitutes for the levels of proteins and proteoforms because
much of the protein abundance variation across human tis-
sues likely stems from post-transcriptional regulation (18). The
role of post-transcriptional regulation is particularly strong for
some proteins, such as those forming complexes, and
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Single-Cell Proteomics by MS
generally can extend to the entire proteome in a condition-
specific manner (16, 19).
Thus, instead of assuming that RNA levels faithfully reflect

protein levels, we should measure both proteins and RNAs.
Such joint measurements can reveal regulatory mechanisms.
For example, covariation between the levels of transcription
factors and mRNAs may suggest transcriptional regulation,
whereas divergence between the RNA and protein levels of a
gene may suggest post-transcriptional regulation of protein
synthesis or degradation. Thus, joint single-cell proteoge-
nomic analysis may enable characterizing both transcriptional
and post-transcriptional regulation in single cells (19–21).
Indeed, combined analysis of single-cell transcriptomics and
proteomics data can detect covariation between transcription
factors, such as p53, and their target transcripts, thus
revealing transcriptional regulation not detectable from single-
cell RNA data alone (21). Such examples are early harbingers
for the potential of single-cell proteomics to identify mecha-
nisms of biological regulation in health and disease (10).
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FIG. 1. Factors required for making single-cell proteomics
broadly accessible. The wide adoption of single-cell proteomics re-
quires a number of factors interacting synergistically as displayed with
the interlocking puzzle pieces.
TRADE-OFFS BETWEEN SINGLE-CELL PROTEOMICS METHODS

This increased appreciation of the need to perform single-
cell protein measurements has stimulated the development
of single-cell MS methods that can identify and quantify
hundreds of proteins from single cells at an unprecedented
scale (21–29). These methods aim to achieve similar objec-
tives, such as efficient delivery of peptides from single cells to
the MS instruments via miniaturized sample preparation (1),
but differ in the approaches used for achieving these objec-
tives. For example, sample preparation volumes can be
reduced by using microfabricated wells (30) or by using
droplets on the surface of a slide (31). All single-cell MS
methods can be classified either as label free or as multi-
plexed, and these categories have associated advantages and
disadvantages as previously reviewed (1, 2). An advantage of
multiplexed methods for single-cell proteomics is that they
can afford analyzing more cells per unit time. Since this
increased throughput is relevant to scaling up the analysis to
thousands of single cells, the rest of this perspective will focus
on multiplexed methods albeit much of the discussion will be
relevant to label-free methods as well.
Methods for multiplexed single-cell proteomics have relied

primarily on using isobaric mass tags, usually combined with
the isobaric carrier approach (32). This approach was intro-
duced by Single-Cell ProtEomics by MS (SCoPE-MS) (22) and
has been incorporated in its second version SCoPE2 (21) and
other highly similar methods (25, 26, 33, 34). This approach
has also allowed deep proteome quantification from small
cancer samples (35) and increased sensitivity of thermal pro-
teome profiling (36). Using the TMTpro 18-plex reagents (37),
multiplexed single-cell proteomics methods can quantify
thousands of proteins across thousands of individual cells
within weeks and thus generate single-cell data at a
2 Mol Cell Proteomics (2022) 21(1) 100179
comparable scale to multiwell-based scRNA-Seq methods
(38). A major difference from comparable scRNA-Seq
methods is that multiplexed single-cell proteomics methods
have not yet become as widely employed. Thus, achieving
wide adoption represents an opportunity to advance single-
cell biology and biomedical research more generally.
Two complementary requirements to scaling up single-cell

proteomics are (i) making the approaches robust and widely
available, that is, accessibility and (ii) increasing the number of
cells that can be analyzed per project, that is, throughput.
These requirements are discussed below, both their state and
their prospects for further development.
INCREASING ROBUSTNESS AND ACCESSIBILITY

Ideally, any laboratory capable of performing quantitative
MS proteomics should be able to perform quantitative protein
analysis in single cells. Achieving this goal requires robust
single-cell proteomics protocols that can be performed on
widely available equipment (Fig. 1). This requirement is
sometimes incompatible with achieving the highest perfor-
mance since the highest performance may require custom
solutions that are challenging to implement, such as very low
flow rate chromatographic separation on home-packed col-
umns. Such high-performance solutions play a major role in
driving technological developments and should be pursued in
parallel with protocols aiming for robustness and accessibility.
The aim for robustness and accessibility has been a guiding

principle in the development of the SCoPE2 protocol (39).
Specifically, the protocol uses only commercially available
equipment that is available to most core facilities and MS
laboratories. Similarly, other protocols such as automated
multiwell plate sample preparation (40, 41) are amenable to
wide adoption. Such protocols can already be implemented
by the MS community and thus can support the first wave of
broader adoption of single-cell proteomics. It is imperative
that accessible protocols are applied with essential controls:
In the absence of controls, failures because of incorrect
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implementation of the protocols may be misattributed to poor
performance to the methods (39). Such failures and misattri-
bution can setback the progress of single-cell proteomics.
A major impediment to implementing MS methods can be

the overhead associated with method optimization for each
project, which may be very time consuming. This overhead
may be reduced by highly detailed protocols that minimize the
rediscovery of pitfalls. Nonetheless, even the best protocols
tend to require some adaptation and troubleshooting. These
aspects can be greatly facilitated by user-friendly computa-
tional pipelines that allow for quick diagnosis of problems and
parameter optimization (Fig. 1). Examples of such pipelines
developed for single-cell proteomics include data-driven
optimization of MS (42) and the SCPcompanion (43). Such
pipelines can reduce the overhead associated with method
adaptation and pinpoint analytic parameters that need
adjustment. For example, data-driven optimization of MS
automatically evaluates factors required for quantitative
single-cell proteomics by SCoPE2, such as high labeling ef-
ficiency and sampling close to the apices of elution peaks.
Such computational pipelines are likely to facilitate the
broader adoption of single-cell proteomics methods and their
adaptation to different sample types and priorities, such as
setting the desired balance between number of analyzed
proteins and number of sampled protein copies per cell (32).
Tools that are not specific for single-cell proteomics (as
reviewed in Ref. (44)) can also provide useful functionality,
such as data exploration and visualization (45, 46). The
development and further refinement of easy-to-use pipelines
for optimizing data acquisition and evaluating sample and
data quality is an important investment toward significantly
reducing the overhead of adopting single-cell proteomics
methods.
Making single-cell proteomics accessible also demands

accessible computational pipelines for data analysis and
interpretation. Currently, several pipelines are available for
data processing, including the SCoPE2 pipeline (https://doi.
org/10.5281/zenodo.4339954), its implementation in the scp
Bioconductor package that offers increased functionality (47),
and SCeptre (25). The SCoPE2 pipeline and the scp package
are implemented in the R programming language, whereas
SCeptre is implemented in Python. These pipelines can pro-
vide the initial data processing from search engine output to
data matrices, which then can be analyzed further by
computational tools developed for scRNA-Seq data, as in the
case of joint projection of mRNA and protein data with Conos
(21, 48). Thus, the existing software packages already provide
a functional toolset that is certain to grow in a positive feed-
back loop with the increased adoption of single-cell prote-
omics across the community. This growth should include error
estimation and propagation algorithms informed by the char-
acteristics of the measurement noise in single-cell MS data.
Furthermore, we should expand the pipeline functionality that
quantifies the dependence of the final results on the choice of
data processing steps. For example, reporting whether the
identification of a subpopulation of single cells depends on the
method used for batch correction.
All data processing pipelines should transparently report

quality control metrics based on consensus community
standards (Fig. 1). Such community standards are urgently
needed to support the wider adoption and scaling up of
single-cell proteomics. Specifically, these metrics must
distinguish between reproducibility and quantitative accuracy,
between accuracy of relative and absolute quantification,
between the variety of approaches used for computing co-
efficients of variation, and many other quantitative measure-
ments that are currently conflated in single-cell MS
publications (18, 49, 50). These community standards should
reflect a broad consensus, and indeed conference workshops
have begun discussions toward formulating such standards
(http://workshop2019.single-cell.net/). This important next
step should be established by an authoritative white paper
articulating best practices and recommending quantitative
benchmarks and data reporting formats.
INCREASING THE THROUGHPUT OF SINGLE-CELL PROTEOMICS

High throughput is essential for many biological in-
vestigations, especially for achieving high enough statistical
power (51). In the case of single-cell analysis, throughput is
also essential to enable the analysis of a large enough number
of single cells to have a chance to sample rare cells (8, 10).
The throughput of single-cell proteomics is determined both
by the throughput of sample preparation and by the
throughput of MS analysis.
HIGHLY PARALLEL SAMPLE PREPARATION

Just a few years ago, relatively few single cells could be
simultaneously prepared for analysis (30, 52, 53), and thus,
sample preparation was a limiting step. Sample preparation
throughput increased with the introduction of automated
multiwell-plate methods, such as minimal ProteOmic sample
Preparation (mPOP) (21, 39, 40) and automated preparation in
one pot for trace samples (autoPOTS) (41). A further increase
is afforded by a droplet sample preparation method (nano-
ProteOmic sample Preparation [nPOP]) that enables the
simultaneous and automated preparation of over 2000 single
cells in droplets on a slide surface (31). In addition to
increasing throughput, the simultaneous processing of thou-
sands of cells reduces the batch effects associated with
different sample preparation batches.
While nPOP uses only commercially available equipment

and reagents, the equipment is expensive and not widely
available (31). Thus, nPOP is less accessible than mPOP and
autoPOTS. This example illustrates the tradeoff between high
performance, in this case, simultaneous preparation of thou-
sands of single cells in 20 nl reaction volumes, and the most
accessible protocols, mPOP and autoPOTS. Importantly, the
Mol Cell Proteomics (2022) 21(1) 100179 3
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accessible protocols can support high-quality sample prepa-
ration and can empower single-cell proteomics analysis even
for laboratories that do not have access to expensive
equipment.
PARALLEL ANALYSIS OF BOTH PEPTIDES AND SINGLE CELLS

As the rate of robust sample preparation has increased, the
rate of MS analysis of samples has become limiting. The two
principal approaches to relieving this limitation are (i)
increased multiplexing and (ii) decreased MS time per sample
(Fig. 2). Increased multiplexing is particularly attractive as it
may be combined with pooling peptide fragments across
single cells and thus enhance peptide sequence identification
(32). Furthermore, the relatively small protein amount per
single cell implies that increased multiplexing should not limit
the copy number of ions sampled per single cell (1). These
advantages will likely motivate the development of higher plex
reagents for single-cell proteomics. While such development
requires significant investments for isobaric mass tags (37),
nonisobaric isotopologous mass tags may be easier to
develop and may enable both high sensitivity and high
throughput (54).
Multiplexing single-cell proteomics can introduce batch ef-

fects and help mitigate them. Variability between batches of
mass tags or tag-specific biases could result in batch effects.
Such problems can be minimized by using high-quality iso-
topologous mass tags. Batch effects originating from multi-
plexing can be reduced by using reference samples to
normalize for set-specific artifacts (21, 39). Experimental
strategies that minimize set-specific biases can further mini-
mize batch effects. For example, nonisobaric multiplexing
avoids biases because of coisolating isobarically labeled
peptides (54). While such experimental design strategies can
reduce batch effects, some batch effects will remain and may
require computational corrections.
   Sample 
multiplexing

   Short
separation
    times  

      High-throughput
single-cell proteomics

  Parallel 
  peptide
  analysis 

        Parallel analysis of 
both peptides and single cells

FIG. 2. Strategies for increasing the throughput of single-cell
proteomics. The throughput can be increased by (i) parallel analysis
of single cells via sample multiplexing, parallel analysis of peptides via
DIA, and (iii) shorter separation times, which reduce the MS time per
labeled set. Combining the gains from these three approaches can
multiplicatively increase the throughput of single-cell proteomics (54).
DIA, data-independent acquisition.
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The second approach to increased MS throughput is
decreased MS time per sample (Fig. 2). Such decrease will
reduce the number of peptides that can be analyzed by data-
dependent acquisition but may support high-throughput
analysis by data-independent acquisition (DIA) (4, 54), as
demonstrated with bulk samples (51, 55). The high flow rates
used with ultra-fast bulk DIA analysis are incompatible with
maximizing MS sensitivity, but nonetheless shorter gradients
may speed up single-cell analysis as well. Indeed, this pos-
sibility has been demonstrated with label-free DIA analysis of
single HeLa cells utilizing 30 min of chromatographic gradi-
ents (29). Yet, much shorter gradients are required if label-
free analysis is to match the throughput of multiplexed
methods.
Ideally, throughput can be synergistically increased by

combining short separation times and parallel analysis of both
peptides and single cells (Fig. 2). This combination may be
achieved by multiplexed DIA performed on short gradients: It
multiplies the advantages of sample multiplexing, parallel
peptide analysis, and short MS analysis time per sample (1, 4,
54). Multiplexing DIA with 3-plex nonisobaric isotopologous
mass tags allows for threefold increased throughput without
reduction of proteome coverage or quantitative accuracy (54).
This strategy, termed plexDIA, allows for accurate protein
quantification at both MS1 and MS2 levels (54). It was enabled
by advances in data interpretation and can be further
advanced by improving data interpretation, such as peptide
sequence propagation within a labeled set. Another major
opportunity for advancing plexDIA is the development of
higher plex nonisobaric mass tags. Indeed, if scaled to higher
plex, plexDIA can provide a substantial increase in the
sensitivity, quantitative accuracy, and throughput of single-
cell proteomics (4, 54). Combination of increased DIA multi-
plexing and short separation gradients appears the most
promising strategy for achieving high-throughput and high-
depth quantitative single-cell proteomics.
CONCLUSION

Increasing appreciation for the need to perform single-cell
protein analysis has propelled the field of single-cell prote-
omics by MS, resulting in methods that allow quantifying over
a thousand proteins per cell while analyzing hundreds of sin-
gle cells per day. Taking advantage of these capabilities re-
quires their broad dissemination, which in turn requires robust
and accessible protocols and data analysis pipelines. These
requirements are already available to support the first wave of
technology dissemination, and this dissemination will in turn
drive the development of more analytical and computational
tools. Central to the success of this virtuous cycle is a set of
community standards that will ensure rigor in data reporting
and interpretation. The stage is set for scaling up single-cell
proteomics to the challenges and opportunities of cutting-
edge biomedical research.
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