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Cellular heterogeneity is important to biological processes, including cancer and develop-

ment. However, proteome heterogeneity is largely unexplored because of the limitations of

existing methods for quantifying protein levels in single cells. To alleviate these limitations,

we developed Single Cell ProtEomics by Mass Spectrometry (SCoPE-MS), and validated

its ability to identify distinct human cancer cell types based on their proteomes. We used

SCoPE-MS to quantify over a thousand proteins in differentiating mouse embryonic stem

(ES) cells. The single-cell proteomes enabled us to deconstruct cell populations and infer pro-

tein abundance relationships. Comparison between single-cell proteomes and transcriptomes

indicated coordinated mRNA and protein covariation. Yet many genes exhibited functionally

concerted and distinct regulatory patterns at the mRNA and the protein levels, suggesting

that post-transcriptional regulatory mechanisms contribute to proteome remodeling during

lineage specification, especially for developmental genes. SCoPE-MS is broadly applicable to

measuring proteome configurations of single cells and linking them to functional phenotypes,

such as cell type and differentiation potentials.
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Cellular systems, such as tissues, cancers, and cell cultures, consist of a variety of cells with

distinct molecular and functional properties. Characterizing such cellular differences is key to

understanding normal physiology, combating cancer recurrence (1,2), and enhancing targeted dif-

ferentiation for regenerative therapies (3); it demands quantifying the proteomes of single cells.

However, quantifying proteins in single mammalian cells remains confined to fluorescent imag-

ing and antibodies. Fluorescent proteins have proved tremendously useful but are limited to quan-

tifying only a few proteins per cell and sometimes introduce artifacts (4). Multiple methods for

quantifying proteins in single cells have been recently developed, including single-cell Western

blots (5), CyTOF (6), and Proseek Multiplex, an immunoassay readout by PCR (7). These meth-

ods enabled quantifying up to a few dozen endogenous proteins but their throughput and accuracy

are limited by the availability of highly-specific antibodies that bind their cognate proteins stoichio-

metrically. Recent advances have pushed the sensitivity of Mass Spectrometry (MS) to proteins

from hundreds of mammalian cells (8), single human oocytes (9) and frog embryos (10) but these

small samples still exceed the protein content of a typical mammalian cell (∼ 15µm diameter) by

orders of magnitude (11).

We aimed to overcome these limitations by developing a high-throughput method for Single

Cell ProtEomics by Mass Spectrometry (SCoPE-MS) that can quantify thousands of proteins in

single mammalian cells. To develop SCoPE-MS, we resolved two major challenges: (i) delivering

the proteome of a mammalian cell to a MS instrument with minimal protein losses and (ii) simul-

taneously identifying and quantifying peptides from single-cell samples. To overcome the first

challenge, we manually picked live single cells under a microscope and lysed them mechanically

(by Covaris sonication in glass microtubes), Fig. 1a. This method was chosen to obviate chemicals

that may undermine peptide separation and ionization or sample cleanup that may incur significant

losses. The proteins from each cell lysate were quickly denatured at 90 oC and digested with

trypsin at 45 oC overnight, Fig. 1a. Special care was take to ensure that each tube contains only

one cell. see Methods for full experimental details.

To overcome the second challenge, we made novel use of tandem mass tags (TMT). This

technology was developed for multiplexing (12), which affords cost-effective high-throughput.
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Even more crucial to our application, TMT allows quantifying the level of each TMT-labeled

peptide in each sample while identifying its sequence from the total peptide amount pooled across

all samples (12). SCoPE-MS capitalizes on this capability by augmenting each single-cell set with

a sample comprised of ∼ 100 − 200 carrier cells that provide enough ions for peptide sequence

identification, Fig. 1a. The carrier cells also help with the first challenge by reducing losses from

single cells, since most of the peptides sticking to tips and tube walls originate from the carrier

cells. Thus, the introduction of labeled carrier cells into single-cells TMT sets helps overcome the

two major challenges.

Quantification of TMT-labeled peptides relies on reporter ions (RI) whose levels reflect both

peptide abundances and noise contributions, such as coisolation interference and background noise

(12, 13). The low protein abundance poses extreme challenges to the signal-to-noise ratio (SNR)

and requires careful evaluation even of aspects that are well established and validated in bulk MS

measurements. To evaluate the contribution of background noise to single-cell RI quantification,

we estimated the signal-to-noise ratio (SNR), Fig. S1. The estimates indicated that RI intensities

are proportional to the amount of labeled single-cell proteomes, and very low for channels left

empty. These data suggest that the signal measured in single cells exceeds the background noise

by 10-fold or more. As an added SNR control for every TMT set, SCoPE-MS leaves the 130N

channel empty, so that 130N RI reflect both isotopic cross-contamination from channel 131 and

the background noise. We further verified that RI intensities in a channel are proportional to the

protein amount labeled in that channel for both lowly and highly abundant RIs, Fig. S1b,c.

To evaluate the ability of SCoPE-MS to distinguish different cell types, we prepared three label-

swapped and interlaced TMT sets with alternating single Jurkat and U-937 cells, two blood cancer

cell lines with average cell diameter of only 11 µm (Fig. 1b). The levels of all 767 proteins quan-

tified in single cells were projected onto their principle components (PC). The two-dimensional

projections of single-cell proteomes clustered by cell type and in proximity to the projection of

bulk samples from the same cell type (Fig. 1c), suggesting that SCoPE-MS can identify cell types

based on their proteomes. This cell-type stratification is not driven just by highly abundant proteins

since the mean levels of each protein across the single cells was set to one; thus highly and lowly
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abundant proteins contributed equally to cell clustering. We observed similar cell-type clustering

when using carrier cells from different types, affirming the expectation that the relative quantifica-

tion of proteins in single cells is not contaminated by the carrier cells, Fig. S2; see Supplementary

notes 1 and 2. To further test the quantification of cell-type specific protein expression, we iden-

tified proteins whose levels vary less within a cell type than between cell types. We found 107

proteins showing such trends at FDR < 2%; see representative distributions for such proteins in

Fig. 1d.

Next, we sought to compare SCoPE-MS quantification against an orthogonal and reliable

method for quantifying proteins in single cells, the fluorescence of mCherry and iRFP. To this

end, the relative levels of the two proteins were quantified in each single cells by a Fluorescence-

Activated Cell Sorting (FACS) sorter and by SCoPE-MS, Fig. 1e. The Spearman correlations for

both proteins exceed 0.7, suggesting that estimates of relative protein levels by SCoPE-MS are

comparable to those derived by FACS.

Given the difficulty of measuring extremely low protein levels, we further evaluated SCoPE-

MS data by comparing the mean estimates across single cells from Fig. 1b to the corresponding

estimates from bulk samples for both absolute (Fig. S3a) and relative (fold-change; Fig. S3b)

protein levels. The correlations between bulk and single-cell estimates indicate good agreement

despite the noise inherent in single cell measurements. The relative quantification by SCoPE-

MS was further evaluated by correlating protein fold-changes estimated from different pairs of

Jurkat and U-937 cells labeled with different TMT tags, demonstrating good consistency of relative

quantification for all cells and TMT tags (mean correlation ρ > 0.5; Fig. S3c). To eliminate

the contribution of biological variability and estimate the reproducibility of the MS measurement

alone, we split a SCoPE-MS set into two and quantified each half separately. Comparisons of

corresponding protein ratios estimated from each half indicated reliability between 60% and 85%

depending on the magnitude of the fold changes, Fig. S3d. This reliability is achieved with about

70 ng of total protein per cell proteome (11) and compares favorably to reliability for bulk datasets

(14). Taken together, these estimates of quantification accuracy and reproducibility demonstrate

that while SCoPE-MS measurements are noisier than bulk MS measurements, they are accurate
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and reproducible, especially for larger fold-changes.

Next, we quantified single-cell proteome heterogeneity and dynamics during ES cell differ-

entiation. To initiate differentiation, we withdrew leukemia inhibitor factor (LIF) from ES cell

cultures and transitioned to suspension culture; LIF withdrawal results in complex and highly het-

erogeneous differentiation of epiblast lineages in embryoid bodies (EB). We used SCoPE-MS to

quantify over a thousand proteins at FDR = 1 % (Fig. S4a) and their pair-wise correlations (aver-

aging across single cells) in days 3, 5, and 8 after LIF withdrawal (Fig. 2a). Cells from different

days were processed together to minimize batch biases (15).

We first explored protein covariation as reflected in the overrepresentation of functionally re-

lated proteins within highly coherent clusters of protein-protein correlations, Fig. 2a. The large

clusters on all days are enriched for proteins with biosynthetic functions. This covariation is con-

sistent with the possibility of heterogeneous and asynchronous slowing of cell growth as cells

differentiate. The smaller clusters correspond to lineage-specific proteins and more specialized

functions.

Next, we projected the proteomes of single cells from all days (190 cells) onto their PCs,

Fig. 2b. The projections partially cluster by time of differentiation; indeed, PC 1 loading correlate

to the days post LIF withdrawal, Fig. S4b. However, the clustering by time of differentiation is

incomplete because of asynchrony in the differentiation (16), and, even more interestingly, be-

cause of emerging cell fate specification. Consistently, the small clusters of lineage-specific genes

(Fig. 2a) suggest that we have quantified proteomes of distinct cell states; thus we attempted to

identify cell clusters by projecting the EB proteomes onto their PCs and identifying sets of pro-

teins that are concertedly regulated in each cluster, Fig. 2c,d. The projection resulted in clusters of

cells, whose identity is suggested by the dominant proteins in the singular vectors. We identified

biological functions over-represented (14) within the distribution of PC loadings and colorcoded

each cell based on the average levels of proteins annotated to these functions. The PCs do not cor-

relate to missing data, indicating that our experimental design has overcome challenges common to

high-throughput single-cell data (15); see Methods. These results suggest that SCoPE-MS data can

meaningfully classify cell identity for cells from complex and highly heterogeneous populations.
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Klein et al. (16) recently quantified mRNA heterogeneity during ES differentiation, and we

used their inDrop data to simultaneously analyze mRNA and protein covariation and to directly

test whether genes coexpressed at the mRNA level are also coexpressed at the protein level. To

this end, we computed all pairwise correlations between RNAs (Fig. 3a) and proteins (Fig. 3b) for

all genes quantified at both levels in cells undergoing differentiation for 7 and 8 days. Clustering

hierarchically the correlation matrices results in 3 clusters of genes. To compare these clusters,

we computed the pairwise Jaccard coefficients, defined as the number of genes present in both

classes divided by the number of genes present in either class, i.e., intersection/union). The results

(Fig. 3c) indicate that the largest (green) cluster is 55 % identical and the medium (blue) cluster is

33 % identical. This cluster stability is also reflected in a positive correlation between correspond-

ing mRNA and protein correlations, Fig. 3d. The magnitude of this correlation is comparable to

protein-mRNA correlations from bulk datasets (14, 17) and testifies strongly for the quantitative

accuracy of both inDrop and SCoPE-MS.

Having established a good overall concordance between mRNA and protein covariation, we

next explored whether and how much this concordance varies between genes with different bio-

logical functions. The covariation concordance of a gene was estimated as the similarity of its

mRNA and protein correlations, i.e., the correlation between the corresponding correlation vec-

tors (18). The median concordance of ribosomal proteins (RP) of both the 60S (RPL) and 40S

(RPS) is significantly higher than for all genes, Fig. 3e. This result indicates that RPL and RPS

genes have significantly (p < 10−20) more similar gene-gene correlations at the mRNA and the

protein levels than the other quantified genes. Some RPs correlate less well to the remaining RPs

(Fig. S5), which may reflect lineage specific ribosome remodeling, but this possibility needs to

be evaluated more directly with isolated ribosomes (19). In contrast to RPs, genes functioning in

tissue morphogenesis, proteolysis, and development have significantly (p < 10−3) lower concor-

dance at the mRNA and protein level than all genes, Fig. 3e.

The power of MS proteomics had been circumscribed to bulk samples. Indeed, the TMT

manufacturer recommends 100 µg of protein per channel, almost 106 more than the protein content

of a typical mammalian cell (11). SCoPE-MS bridged this gap by efficient sample preparation and
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the use of carrier cells. These innovations open the gates to further improvements (e.g., increased

multiplexing) that will make single-cell MS proteomics increasingly powerful.

SCoPE-MS enabled us to classify cells and explore the relationship between mRNA and protein

levels in single mammalian cells. This first foray into single mammalian proteomes demonstrates

that mRNA covariaion is predictive of protein covariaion even in single cells. It further establishes

the promise of SCoPE-MS to quantitatively characterize single-cell gene regulation and classify

cell types based on their proteomes.

Acknowledgments: We thank S. Semrau, R. Zubarev, J. Neveu, H. Specht, A. Phillips and

A. Chen for assistance, discussions and constructive comments, as well as the Harvard University

FAS Science Operations for supporting this research project. We thanks A. Raj and B. Emert for the

gift of MDA-MB-231 cell line expressing mCherry and LifeAct-iRFP670. This work was funded

by startup funds from Northeastern University and a New Innovator Award from the NIGMS from

the National Institutes of Health to N.S. under Award Number DP2GM123497.

Competing Interests: The authors declare that they have no competing financial interests.

Contributions: B.B., and N.S. conceived the research. B.B., E.L. and N.S. performed experiments

and collected data; N.S. analyzed the data and wrote the manuscript.

The raw MS data were deposited in MassIVE (ID: MSV000080489).

7

.CC-BY-NC-ND 4.0 International licensepeer-reviewed) is the author/funder. It is made available under a
The copyright holder for this preprint (which was not. http://dx.doi.org/10.1101/102681doi: bioRxiv preprint first posted online Jan. 24, 2017; 

http://dx.doi.org/10.1101/102681
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure Captions

Figure 1 | Validating SCoPE-MS by classifying single cancer cells based on their proteomes.
(a) Conceptual diagram and work flow of SCoPE-MS. Individually picked live cells are lysed by
sonication, the proteins in the lysates are digested with trypsin, the resulting peptides labeled with
TMT labels, combined and analyzed by LC-MS/MS (Orbitrap Elite). (b) Design of control exper-
iments used to test the ability of SCoPE-MS to distinguish U-937 cells from Jurkat cells. Each set
was prepared and quantified on a different day to evaluate day-to-day batch artifacts. (c) Unsuper-
vised principal component (PC) analysis using data for quantified proteins from the experiments
described in panel (b) stratifies the proteomes of single cancer cells by cell type. Protein levels
from 6 bulk samples from Jurkat and U-937 cells are also projected and marked with filled semi-
transparent circles. Similar separation of Jurkat and U-937 cells is observed when different carrier
cells are used, Fig. S2; see Supplementary note 1. (d) Distributions of protein levels across single
U-937 and Jurkat cells indicate cell-type-specific protein abundances. (e) Adenocarcinoma cells
(MDA-MB-231) expressing mCherry and LifeAct-iRFP670 were sorted by Aria FACS into a 96
well plate, one cell per well. The relative levels of mCherry and iRFP were estimated by the sorter
(from their florescence intensity) and by SCoPE-MS, and the two estimates compared by their
Spearman correlations (ρ).

Figure 2 | Identifying protein covariation and cell clusters across differentiating ES cells.
(a) Clustergrams of pairwise protein-protein correlations in cells differentiating for 3, 5, and 8 days
after LIF withdrawal. The correlation vectors were hierarchically clustered based on the cosine of
the angles between them. All single cell sets used the same carrier channel which was comprised
of cells mixed from different time points. (b) The proteomes of all single EB cells were projected
onto their PCs, and the marker of each cell color-coded by day. The single-cell proteomes cluster
by day, a trend also reflected in the distributions of PC 1 loadings by day, Fig. S3. (c, d) The
proteomes of cells differentiating for 8 days were projected onto their PCs, and the marker of each
cell color-coded based on the normalized levels of all proteins from the indicated gene-ontology
groups.
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Figure 3 | Coordinated mRNA and protein covariation in differentiating ES cells.
(a) Clustergram of pairwise correlations between mRNAs with 2.5 or more reads per cell as quan-
tified by inDrop in single EB cells (16). (b) Clustergram of pairwise correlations between proteins
quantified by SCoPE-MS in 12 or more single EB cells. (c) The overlap between corresponding
RNA from (a) and protein clusters from (b) indicates similar clustering patterns. (d) Protein-
protein correlations correlate to their corresponding mRNA-mRNA correlations. Only genes with
significant mRNA-mRNA correlations were used for this analysis. (e) The concordance between
corresponding mRNA and protein correlations (computed as the correlation between between cor-
responding correlations (18)) is high for ribosomal proteins (RPL and RPS) and lower for develop-
mental genes; distribution medians are marked with red pluses. Only the subset of genes quantified
at both RNA and protein levels were used for all panels.
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Methods

Cell culture Mouse embryonic stem cells (E14 10th passage) were grown as adherent cultures

in 10 cm plates with 10 ml Knockout DMEM media supplemented with 10 % ES certified FBS,

nonessential amino acids (NEAA supplement), 2 mM L-glutamine, 110 µMβ-mercapto-ethanol,

1 % penicillin and streptomycin, and leukemia inhibitory factor (mLIF; 1,000 U LIF/ml). ES cells

were passaged every two days using StemPro Accutase on gelatin coated tissue culture plates. ES

differentiation was triggered by passaging the ES cells into media lacking mLIF in low adherence

plates and growing the cells as suspension cultures. Jurkat and U937 cells were grown as sus-

pension cultures in RPMI medium (HyClone 16777-145) supplemented with 10% FBS and 1%

pen/strep. Cells were passaged when a density of 106 cells/ml was reached, approximately every

two days.

Harvesting cells for SCoPE-MS To harvest cells, embryoid bodies were dissociated by treatment

with StemPro Accutase (ThermoFisher #A1110501 ) and gentle pipetting. Cell suspensions of

differentiating ES cells, Jurakt cells or U-937 cells were pelleted and washed quickly with cold

phosphate buffered saline (PBS). The washed pellets were diluted in PBS at 4 oC. The cell density

of each sample was estimated by counting at least 150 cells on a hemocytometer, and an aliquot

corresponding to 200 cells was placed in a Covaris microTUBE-15, to be used for the carrier

channel. For picking single cells, two 200µl pools of PBS were placed on a cooled glass slide.

Into one of the pools, 2µl of the cell dilution was placed and mixed, to further dilute the solution.

A single cell was then picked under a microscope into a micropipette from this solution. Then,

to verify that only one cell was picked, the contents of the micropipette were ejected into the

other pool of PBS, inspected, then taken back into the pipette and placed in a chilled Covaris

microTUBE-15. Cell-samples in Covaris microtubes were frozen as needed before cell lysis and

labeling.

Sorting cells by FCAS Adenocarcinoma cells (MDA-MB-231) expressing mCherry and LifeAct-

iRFP670 were sorted by Aria FACS into PCR strip-tubes, one cell per tube. Each tube contained

2µ l of water and had a max volume of 200µ l. The fluorescence of each protein was measured

and the protein abundance estimated after compensation for the spectral overlap between mCherry
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and iRFP.

Cell lysis and digestion Each sample – containing a single cell or carrier cells – was lysed by

sonication in a Covaris S220 instrument (Woburn, MA) (8). Samples were sonicated for 180s at

125 W power with 10% peak duty cycle, in a degassed water bath at 6 oC. During the sonication,

samples were shaken to coalesce droplets and bring them down to the bottom of the tube. After

lysis, the samples were heated for 15 min at 90 oC to denature proteins. Then, the samples were

spun at 3000 rpm for 1 min, and (50ng/µl) trypsin was added; 0.5µl to single cells and 1µl

to carrier cells. The samples were digested overnight, shaking at 45 oC. Once the digest was

completed, each samples was labeled with 1µl of 85mM TMT label (TMT10 kit, Thermo-Fisher,

Germany). The samples were shaken for 1 hour in a tray at room temperature. The unreacted

TMT label in each sample was quenched with 0.5µl of 5% hydroxylamine for 15 min according

to manufacturers protocol. The samples corresponding to one TMT10 plex were then mixed in

a single glass HPLC vial and dried down to 10 µl in a speed-vacuum (Eppendorf, Germany) at

35oC.

Bulk set The six bulk samples of Jurkat and U-937 cells contained 2,500 cells per sample. The

cells were harvested, lysed and processed using the same procedure as for the single cells but with

increased amount of trypsin and TMT labels. The samples were labeled, mixed and run as a 6-plex

TMT set.

Mass spectrometry analysis Each TMT labeled set of samples was submitted for single LC-

MS/MS experiment that was performed on a LTQ Orbitrap Elite (Thermo-Fisher) equipped with

Waters (Milford, MA) NanoAcquity HPLC pump. Peptides were first trapped and washed onto

a 5cm x 150µm inner diameter microcapillary trapping column packed with C18 Reprosil resin

(5 µm, 10 nm, Dr. Maisch GmbH, Germany). The peptides were separated on analytical column

20cm x 75 µm of C18 TPP beads (1.8 µm, 20 nm, Waters, Milford, MA) that was heated to

60oC. Separation was achieved through applying an active gradient from 7− 27 % ACN in 0.1 %

formic acid over 170 min at 200 nl/min. The active gradient was followed by a 10 min 27 − 97

% ACN wash step. Electrospray ionization was enabled through applying a voltage of 1.8 kV

using a home-made electrode junction at the end of the microcapillary column and sprayed from

11

.CC-BY-NC-ND 4.0 International licensepeer-reviewed) is the author/funder. It is made available under a
The copyright holder for this preprint (which was not. http://dx.doi.org/10.1101/102681doi: bioRxiv preprint first posted online Jan. 24, 2017; 

http://dx.doi.org/10.1101/102681
http://creativecommons.org/licenses/by-nc-nd/4.0/


fused silica pico-tips (20 µm ID, 15 µm tip end New Objective, MA). The LTQ Orbitrap Elite

was operated in data-dependent mode for the mass spectrometry methods. The mass spectrometry

survey scan (MS1) was performed in the Orbitrap in the range of 395 - 1,800 m/z at a resolution

of 6 × 104, followed by the selection of up to twenty most intense ions (TOP20) for HCD-MS2

fragmentation in the Orbitrap using the following parameters: precursor isolation width window

of 2 m/z, AGC setting of 100,000, a maximum ion accumulation time of 150ms or 250ms, and

6× 104 resolving power. Singly-charged and and 4+ charge ion species were excluded from HCD

fragmentation. Normalized collision energy was set to 37 V and an activation time of 1 ms. Ions

in a 7.5 ppm m/z window around ions selected for MS2 were excluded from further selection for

fragmentation for 20 s.

Analysis of raw MS data Raw data were searched by MaxQuant (20) 1.5.7.0 against a protein

sequence database including all entries from a SwissProt database and known contaminants such

as human keratins and common lab contaminants. The SwissProt databases were the human Swis-

sProt database for the U-937 and the Jurkat cells and the mouse SwissProt database for the differ-

entiating ES cells. We also searched all data against subsets of the SwissProt databases comprised

from all proteins for which MaxQuant had identified at least one peptide across many single-cell

sets in searches against the full SwissProt databases. Theses reduced fasta databases contained

5,267 proteins for mouse and 4,961 proteins for human. MaxQuant searches were performed with

trypsin specificity, allowing up to two missed cleavages, and including peptides containing from 5

to 26 amino acids. TMT tags on peptide N-termini and lysine residues (+229.162932 Da) were set

as fixed modifications while methionine oxidation (+15.99492 Da) was set as a variable modifi-

cation. All peptide-spectrum-matches (PSMs) and peptides found by MaxQuant were exported in

the msms.txt and the evidence.txt files. Peptides were filtered to 3 % FDR computed as the mean

of the posterior error probability (PEP) of all peptides below the PEP cutoff threshold. All razor

peptides were used for quantifying the proteins to which they were assigned by MaxQuant.

Data analysis We estimated relative peptide/protein levels from the TMT reporter ions (RI),

and protein abundances from the precursor areas distributed according to the RI levels. While

such estimates are well validated with bulk samples, extremely low input amounts pose unique
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challenges that may result in artifacts, e.g., RI intensities may reflect only background noise or the

isotopic impurities of TMT tags may cross contaminate TMT channels. We evaluated the degree of

background noise and found it significantly below the signal coming from the labeled peptides; see

Fig. S1. To compensate for different amounts of total protein per channel or other channel-specific

variability, the median RI intensities in each channel was set to one by diving all RI intensities by

their median. In the FCAS experiment, the normalization for mCherry was performed using iRFP

as a control, analogous to loading controls in western blots. After this column normalization, the

vector of RI intensities for each peptide was divided by its mean or median, to remove the large

differences in abundances between different peptides. The relative level of each quantified razor

protein was estimated as the median of the relative levels of its peptides. All analysis relied on

relative levels, i.e., the level of protein in a cell relative to its mean or median level across all cells

in which the protein is quantified. Missing peptide and protein levels were imputed using the k-

nearest neighbors algorithm, with k being set to one and the similarity measure for distance being

the cosine of the angle between the proteome vectors.
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Figure 1 | Validating SCoPE-MS by classifying single cancer cells based on their proteomes.
(a) Conceptual diagram and work flow of SCoPE-MS. Individually picked live cells are lysed by
sonication, the proteins in the lysates are digested with trypsin, the resulting peptides labeled with
TMT labels, combined and analyzed by LC-MS/MS (Orbitrap Elite). (b) Design of control exper-
iments used to test the ability of SCoPE-MS to distinguish U-937 cells from Jurkat cells. Each set
was prepared and quantified on a different day to evaluate day-to-day batch artifacts. (c) Unsuper-
vised principal component (PC) analysis using data for quantified proteins from the experiments
described in panel (b) stratifies the proteomes of single cancer cells by cell type. Protein levels
from 6 bulk samples from Jurkat and U-937 cells are also projected and marked with filled semi-
transparent circles. Similar separation of Jurkat and U-937 cells is observed when different carrier
cells are used, Fig. S2; see Supplementary note 1. (d) Distributions of protein levels across single
U-937 and Jurkat cells indicate cell-type-specific protein abundances. (e) Adenocarcinoma cells
(MDA-MB-231) expressing mCherry and LifeAct-iRFP670 were sorted by Aria FACS into a 96
well plate, one cell per well. The relative levels of mCherry and iRFP were estimated by the sorter
(from their florescence intensity) and by SCoPE-MS, and the two estimates compared by their
Spearman correlations (ρ).
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Figure 2 | Identifying protein covariation and cell clusters across differentiating ES cells.
(a) Clustergrams of pairwise protein-protein correlations in cells differentiating for 3, 5, and 8 days
after LIF withdrawal. The correlation vectors were hierarchically clustered based on the cosine of
the angles between them. All single cell sets used the same carrier channel which was comprised
of cells mixed from different time points. (b) The proteomes of all single EB cells were projected
onto their PCs, and the marker of each cell color-coded by day. The single-cell proteomes cluster
by day, a trend also reflected in the distributions of PC 1 loadings by day, Fig. S3. (c, d) The
proteomes of cells differentiating for 8 days were projected onto their PCs, and the marker of each
cell color-coded based on the normalized levels of all proteins from the indicated gene-ontology
groups.
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a b c

d e

Figure 3 | Coordinated mRNA and protein covariation in differentiating ES cells.
(a) Clustergram of pairwise correlations between mRNAs with 2.5 or more reads per cell as quan-
tified by inDrop in single EB cells (16). (b) Clustergram of pairwise correlations between proteins
quantified by SCoPE-MS in 12 or more single EB cells. (c) The overlap between corresponding
RNA from (a) and protein clusters from (b) indicates similar clustering patterns. (d) Protein-
protein correlations correlate to their corresponding mRNA-mRNA correlations. Only genes with
significant mRNA-mRNA correlations were used for this analysis. (e) The concordance between
corresponding mRNA and protein correlations (computed as the correlation between between cor-
responding correlations (18)) is high for ribosomal proteins (RPL and RPS) and lower for develop-
mental genes; distribution medians are marked with red pluses. Only the subset of genes quantified
at both RNA and protein levels were used for all panels.
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Supplementary Figure 1 | Contribution of background noise to quantification of peptides
in single cells. (a) Reporter ion (RI) intensities in a SCoPE set in which the single cells were
omitted while all other steps were carried out, i.e., trypsin digestion, TMT labeling and addition of
carrier cells in channel 131. Thus, RI intensities in channels 126−130C correspond to background
noise. The distribution of RI intensities in the inset shows that the RI for most peptides in channels
126 − 130C are zero, i.e., below the MaxQuant noise threshold. The y-axis is limited to 150
to make the mean RI intensities visible. The mean RI intensity for single-cell channels is about
500. (b) Mean RI intensities for a TMT set in which only 6 channels contained labeled proteome
digests and the other 4 were left empty. Channels 126, 127N, 128C, and 129N correspond to
peptides diluted to levels corresponding to 100, 100, 200 and 300 picograms of cellular proteome,
channel 131 corresponds to the carrier cells (bars truncated by axes), and the remaining channels
were left empty. The RI for most peptides are not detected in the empty channels, and their mean
levels very low. This suggests that background noise is low compared to the signal from peptides
corresponding to a single cell. (c) The intensities for representative RIs from (b) are plotted, color
coded by their mean intensity. The results show that both low (blue) and high (red) abundant RIs
exhibit the expected scaling with the increase of the labeled cell lysate.
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Supplementary Figure 2 | Relative quantification is independent from the carrier channel.
(a) Design of control experiments used to test the ability of SCoPE-MS to distinguish U-937
cells from Jurkat cells independently from the cells in the carrier channel. The carrier channel in
each SCoPE-MS set contained 200 cells: 200 Jurkat cells in set 1, 200 U-937 cells in set 2, and
200 HEK-293 cells in set 3. (b) Unsupervised principal component (PC) analysis using data for
quantified proteins from the experiments described in panel (a) stratifies the proteomes of single
cancer cells by cell type regardless of the type of cells used in the carrier channel. (c) To explore
the extent to which peptides from the carrier channel might affect relative quantification in the
single-cell channels, we computed the pairwise correlations between the relative peptide levels of
a SCoPE-MS set. Relative peptide levels were computed by first normalizing the RI intensities in
each channel to a median of 1 (to correct for different amount of total protein, especially in the
carrier channel) and then by dividing the vector of RI intensities for each peptide by its mean, to
remove the large differences in abundances between different peptides. The correlations between
these relative estimates indicate that Jurkat cells correlate positively to Jurkat cells and negatively
to U-937 cells. The converse holds for U-937 cells. Importantly, the carrier channel correlates
negatively with most single cells, except for a weak correlation with one U-937 cell, perhaps
reflecting slightly high contribution of U-937 cells to the carrier channel.
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Supplementary Figure 3 | Accuracy of SCoPE-MS quantification. (a) Comparison between protein
levels estimates from bulk samples and from single cells. The single-cell protein estimates are the average
from 12 Jurkat cells from the experiments described in Fig. 1b and equal as the summed up precursor
ion areas apportioned by RI intensities. (b) Comparison between relative protein levels (fold changes)
estimated from bulk samples and from single cells. The single-cell protein estimates are the ratio between
average levels summed across 12 Jurkat cells over the average level summed across 12 U-937 cells. Proteins
whose bulk estimates did not change between Jurkat and U-937 cells (fold change less than 10%) were
omitted from the plot. (c) A correlation matrix of all pairwise Pearson correlations among the ratios of
peptide abundances in U-937 and in Jurkat cells from Set 2 in Fig. 1b. The superscripts corresponds to the
TMT labels ordered by mass, with 1 being 126, 2 being 127N and so on. The positive correlations among
estimates from different combinations of TMT channels suggest good consistency of relative quantification.
(d) Distributions of correlations between technical replicates of peptide ratios measured in two halves of the
same single-cell set; each measurement estimated the peptide ratios from peptides corresponding to 1/2 cell.
The first distribution correspond to correlations from across all measured peptides. The other distributions
correspond to the correlations computed from the subset of peptides having coefficient of variation (CV)
above the indicated percentile, i.e., peptides with larger fold changes. The red crosses mark the distribution
medians. Correlations were computed with log transformed protein levels and ratios.
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Supplementary Figure 4 | Proteome coverage of differentiating ES cells and distributions
of the PC 1 loadings by day of differentiation. (a) Distribution of protein abundances for all
proteins quantified from 107 differentiating ES cells or in at least one single-cell SCoPE-MS set
at FDR ≤ 1 %. The probability of quantifying a protein by SCoPE-MS is close to 100 % for the
most abundant proteins quantified in bulk samples and decreases with protein abundance, for total
of 1526 quantified proteins. (b) The proteomes of all differentiating single cells were decomposed
into singular vectors and values, and distributions of the loading (elements) of the singular vector
with the largest singular value, i.e., PC 1, shown as violin plots. Individual blue circles correspond
to single cells, and the red crosses correspond to the medians for each day.
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Supplementary Figure 5 | Correlations between ribosomal proteins (a) All pairwise Pearson
correlations between ribosomal proteins on day 8 were computed by averaging across cells. The
correlations matrix was clustered, using the cosine between the correlation vectors as a similarly
measure.
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Supplementary note 1 |Carrier channel influence on single cell quantification
In shotgun proteomics, peptide ions sent for MS/MS are chosen based on their abundance in the
MS1 survey scan, see Methods. Thus, only peptides with significant abundance in the carrier chan-
nel are likely to be sent for MS2 and quantified in the single cells. Therefore, the composition of
the carrier channel can affect the sets of peptides quantified across the single cells, i.e., SCoPE-
MS samples analyzed by a shotgun method will preferentially provide relative quantification for
proteins that are abundant in the carrier cells. However, the relative quantification of a peptide in
the single cells, i.e., its RI intensities in the single cell channels, is not affected by its abundance
in the carrier cells; its abundance in the carrier cells is reflected only in the 131 RI intensity. Thus
changing the carrier cells in Fig. S2 resulted in a slight change of the probability of quantifying
some proteins, depending on the carrier cells, but hundreds of abundant proteins, such as ribosomal
proteins, were quantified across all cells and carrier channels. Since, most proteins have compa-
rable (within an order of magnitude) abundances across cell and tissue types (14, 17), almost any
cell type can provide useful material for the carrier channel.

Supplementary note 2 | Relative quantification across SCoPE-MS sets
SCoPE-MS allows quantifying only 8 cells per set (Fig. 1), but combining multiple sets can quan-
tify the proteomes of hundreds and thousands of cells. We were able to successfully combine
relative protein levels across SCoPE-MS sets in two different ways: (i) When the carrier material
used across sets is the same (Fig. 1b), we used the carrier channel as a reference as established with
bulk TMT samples (21). (ii) When the carrier material differed across carrier channels (Fig. S2),
we excluded the carrier channel from the analysis and normalized the relative levels of each pep-
tide to a mean 1 across the 8 single cells in each set, 4 Jurkat and 4 U-937 cells. Approach (ii)
worked well in this case because the single cell composition cross the different SCoPE-MS sets
was balanced. Combining SCoPE-MS sets based on a reference channel that is kept the same
across all sets is a more versatile strategy that generalizes to any experimental design and single
cell distribution across sets.
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