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Many proteoforms – arising from alternative splicing, post-translational modifications
(PTMs), or paralogous genes – have distinct biological functions, such as histone PTM prote-
oforms. However, their quantification by existing bottom-up mass–spectrometry (MS) meth-
ods is undermined by peptide-specific biases. To avoid these biases, we developed and im-
plemented a first-principles model (HIquant) for quantifying proteoform stoichiometries.
We characterized when MS data allow inferring proteoform stoichiometries by HIquant,
derived an algorithm for optimal inference, and demonstrated experimentally high accu-
racy in quantifying fractional PTM occupancy without using external standards, even in
the challenging case of the histone modification code. A HIquant server is implemented at:
https://web.northeastern.edu/slavov/2014 HIquant/

1 Introduction

Alternative mRNAs splicing and post-translational modifications (PTMs) produce multiple protein

isoforms per gene, termed proteoforms by Smith et al. (2013). Furthermore, protein isoforms can

be produced by distinct but highly homologous open reading frames, i.e., paralogous genes. De-

spite having similar sequence, proteoforms and protein isoforms often have distinct, even opposite

biological functions (Soria et al., 2014). For examples: (i) some Bcl-x isoforms promote apop-

tosis while other Bcl-x isoforms inhibit apoptosis (Schwerk and Schulze-Osthoff, 2005); (ii) the

methylation of histone 3 can cause either transcriptional activation (lysine 4) or repression (lysine

9) depending on the modified lysine (Berger, 2007); and (iii) pyruvate kinase isoforms have differ-

ent metabolic regulation, activities, and roles in aerobic glycolysis (Tanaka et al., 1967; Christofk

et al., 2008; Slavov et al., 2014).

Understanding such systems demands quantifying proteoform abundances. This demand has

motivated the development of external standards that can afford high accuracy even for complex

proteoforms (Creech et al., 2015). However, their wider use has been limited by expense and ap-

plied only to special cases that allow chemical modification of cell lysates, e.g., phosphorylation

(Wu et al., 2011) and acetylation (Weinert et al., 2014; Baeza et al., 2014). In the absence of exter-

nal standards, the quantification of complex proteoform stoichiometries remains very challenging

because the ratios between proteoform-specific peptides do not necessarily reflect the ratios be-

tween the corresponding proteoforms (Olsen et al., 2010); precursor ion areas corresponding to
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the same phospho-site in the same sample can differ over 100-fold depending on the choice of

protease (Giansanti et al., 2015). This is because a measured peptide level (precursor ion area)

depends not only on the abundance of the corresponding protein(s) but also on extraneous factors

including protein digestion, peptide ionization efficiency, the presence of other co-eluting peptides,

and chromatographic aberrations (Lu et al., 2006; Peng et al., 2012; Giansanti et al., 2015). These

extraneous factors break the equivalence between the abundance of a peptide and its precursor

ion area and thus make protein quantification much more challenging than DNA quantification by

sequencing. This problem is compounded when PTM peptides have been enriched, and thus their

intensities scaled by unknown enrichment-dependent factors.

2 Results

2.1 Model

To infer proteoform stoichiometry, we use a simple model that is illustrated in Fig. 1a with pro-

teoforms of histone H3 and in Supplementary Fig. 1 with paralogous ribosomal proteins and

phospho-proteoforms of pyruvate dehydrogenase. HIquant explicitly models peptide levels mea-

sured across conditions as a superposition of the levels of the proteins from which the peptides

originate, Fig. 1a. In this model, shared peptides serve as indispensable internal standards; they

couple the equations for different peptides and thus make possible estimating stoichiometries be-

tween homologous proteins and proteoforms. The simple example in Fig. 1a generalizes to any

number of proteins / proteoforms (M) and any number of conditions greater than 1 (N > 1) as the

system in Fig. 1b shows. HIquant solves this system and infers the protein levels (P) independently

from the extraneous noise (Z; coming from protein-digestion, peptide-ionization differences, sam-

ple loss during enrichment, and even coisolation interference); Z is also inferred as part of the

solution and discarded. A related superposition model has been used before with peptides quan-

tified at one condition (Gerster et al., 2014). However for a single condition, the model cannot

quantify the proteins independently from the nuisance Z since all problems described by system 1

are under-determined, i.e., have infinite number of solutions (Proof 1; Supplemental Information).

Thus, for a single condition, the model cannot take advantage of the robust corresponding-ion

pairs, i.e., ratios between ions with the same chemical composition. In contrast, HIquant infers

ratios across proteins and their PTMs solely from the corresponding-ion ratios. This is possible

because when N > 1, the system in Fig. 1b often has a unique solution up to a single scaling
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constant, even when all peptides are shared, e.g., the problem defined by the design matrix in Sup-
plementary Fig. 1c. We characterize the conditions under which HIquant has a unique solution

and derive algorithms that use convex–optimization to find the optimal solution given the data; see

Malioutov and Slavov (2014) and Supplemental Information.

2.2 Validating inference of proteoform stoichiometry

Our model (Fig. 1b) aims to make proteoform quantification insensitive to many systematic bi-

ases. For example, incomplete cleavage of a peptide, e.g., only 5% of the peptide is released

during enzyme digestion, is fully absorbed into the corresponding nuisance and does not affect

inferred protein levels as long as the cleavage is 5% for all conditions/samples. Analogously, if

coisolation interference compresses the fold-changes of a peptide, the systematic component of the

compression is fully absorbed by the nuisances. Unlike systematic biases, random noise in the data

is not absorbed by the nuisances; it can degrade the quality of the inference. Thus, HIquant must

carefully evaluate the reliability of interfered proteoform levels. The evaluation uses inference fea-

tures, such as fraction of explained variance, Eigenvalue spectrum spacing and noise sensitivity;

see Supplemental Information.

We sought to experimentally evaluate HIquant’s ability to infer the proteoform stoichiometry

in samples for which stoichiometry is accurately determined by other methods. The first method

included creating and mixing proteoforms. The second method included quantifying histone H3

proteoforms relative to heavy peptide standards with predetermined abundances.

We aimed to create proteoform mixtures with known stoichiometries so that they can be used

to assess the accuracy of stoichiometries inferred by HIquant. To this end, the dynamic universal

proteomics standard (UPS2) was digested, and the peptides split into two equal parts, A and B. In

part A, cysteines were covalently modified with iodoacetamide, and in part B with vinylpyridine,

Fig. 2a. We mixed part A and B in predefined ratios (n) and spiked each mixing ratio into an yeast

sample. All samples were labeled with TMT, and the relative peptide levels quantified from the

reporter ions at the MS2 level.

These alkylated UPS proteoforms have mostly shared peptides (peptides not containing cys-

teine) and a few unique peptides (peptides containing cysteine). HIquant modeled the relative

levels of these peptides as shown in Fig. 1 and solved the model to infer the stoichiometries of the

alkylated proteoforms (n̂), which should correspond to the mixing ratios. A comparison between

the actual mixing ratios (n) with the inferred ratios (n̂) demonstrates a median error below 10 %
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for ratios inferred by HIquant and a substantially larger error for the ratios between precursor ion

areas of unique peptides (Fig. 2b,c); see Supplemental Information.

Next, we sought to evaluate the ability of HIquant to infer stoichiometries of more complex

PTM proteoforms, those of histone H3. This system allows rigorous quantification of endogenous

proteoform stoichiometries by a previously developed external standards (MasterMix) with known

concentrations (Creech et al., 2015). For the test, we used peptides quantified by selective reaction

monitoring (SRM) across 7 perturbations. Fractional site occupancies were either estimated based

on the external standards or inferred by HIquant only from the relative levels of the indigenous

peptides, without using the MasterMix concentrations. The good agreement between these esti-

mates (Fig. 3) validates the ability of HIquant to infer fractional site occupancy even when the

same site may be modified by different PTMs. The estimates from the external standards and from

HIquant are very close but also show some systematic deviations. Those deviations may arise

due to incomplete protein digestion that is hard to control for with peptide standards, measure-

ment noise corrupting the solution inferred by HIquant or proteforms not explicitly included in the

model. The abundances of some proteoforms with quantified peptides is over 1000 fold lower than

the abundance of the main proteoforms. They and their corresponding peptides were omitted from

the HIquant inference since their quantification requires unrealistically high accuracy of relative

quantification; see Supplemental Information and Discussion.

3 Discussion

The idea of using ratios between chemically identical ions is a cornerstone of quantitative pro-

teomics (Blagoev et al., 2004). It has been used for decades in the context of relative quantification

of proteins based on unique peptides (Altelaar et al., 2013) and even applied to the special case of

inferring phosphorylation cite occupancy (Olsen et al., 2010). Our work expands and generalizes

this idea to all peptides, to stoichiometries of complex proteoforms, and to unlimited number of

conditions. Crucially, HIquant allows accurate, efficient, and numerically stable inference result-

ing in reliability estimates.

HIquant requires and depends upon accurate relative quantification. This limitation is largely

and increasingly mitigated by technological developments allowing accurate estimates of corresponding-

ion ratios. However, these technological developments on their own do not allow accurate esti-

mates of PTM site occupancy (Giansanti et al., 2015). HIquant’s dependence on the accuracy of
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relative quantification increases with increasing difference in the abundance of proteoforms. If

the levels of two proteins differ by more than 3-6 orders of magnitude, this difference is likely

better inferred from the precursor ion areas of the unique peptides. The associated noise (due to

variability in protein digestion and ionization) is generally below 100 fold (Peng et al., 2012) and

thus smaller than the signal. HIquant’s utility is particularly relevant when proteins and proteo-

forms have comparable abundances (within 10-100 fold difference) but distinct functions (Slavov

et al., 2015) and thus accurate quantification is essential for quantifying relatively small differ-

ences in abundance. Quantifying proteoforms is an exciting frontier essential for understanding

post-transcriptional regulation (Floor and Doudna, 2016; Franks et al., 2017) and defining cell-

types from single cell proteomes (Budnik et al., 2017).

The general form of HIquant described in Fig. 1c indicates that HIquant is not limited to pro-

teoforms, even broadly defined. Rather, HIquant can be applied to any set of proteins sharing a

peptide. Here we emphasize the application to proteoforms because existing bottom-up methods

are better suited for quantifying the stoichiometry between proteins with low homology that gener-

ate many unique peptides. For proteins with multiple unique peptides, some of the peptide-specific

bias (from variation in protein-digestion and peptide-ionization efficiency) is likely to be averaged

out and reduced. However, this bias is a more serious problem for proteoforms with only one

or only a few unique peptides (Giansanti et al., 2015). For such proteoforms, HIquant can allow

estimating stoichiometries accurately using only ratios between chemically identical ions.

Supplemental Information. Supplemental information includes Extended Experimental Proce-

dures, Mathematical Proofs, and Supplemental Figures can be found in the Supplemental Informa-

tion. The supplemental website for interactive data analysis can be found at:

https://web.northeastern.edu/slavov/2014 HIquant/
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Figure 1
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Figure 1 | Model for inferring stoichiometries among proteoforms and paralogous proteins inde-
pendently from peptide-specific biases. (a) One shared (X2) and three unique (X1, X3 and X4)
peptides of H3 proteoforms illustrate a very simple case of HIquant. HIquant models the peptide
levels measured across conditions (~x) as a supposition of the protein levels (~p), scaled by unknown
peptide–specific biases/nuisances (z). These coupled equations can be written in a matrix form
whose solution infers the methylation stoichiometry independently from the nuisances (z). (b)
The general form of the model for K proteoforms (or homologous proteins) with M peptides quan-
tified across N conditions can be formulated and solved. In many, albeit not all, cases an optimal
and unique solution can be found, even in the absence of unique peptides; see Supplementary
Fig. 1 and Supplemental Information.
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Figure 2
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Figure 2 | HIquant accurately quantifies ratios across alkylated proteoforms of a spiked-in stan-
dard. (a) Schematic diagram of a validation experiment. We prepared a gold standard of proteo-
forms from the dynamic universal proteomics standard (UPS2) whose cysteines were covalently
modified either with iodoacetamide or with vinylpyridine. Upon digestion, these modified UPS
proteins generate many shared peptides (peptides not containing cysteine) and a few unique pep-
tides (peptides containing cysteine). The modified UPS2 proteins were mixed with one another at
known ratios (n), mixed with yeast lysate, digested and quantified by MS. The proteoform ratios
that HIquant inferred from the MS data (n̂) were compared to the mixing ratios. (b) The ratios
across the alkylated isoforms of UPS2 inferred by HIquant (n̂, y-axis) accurately reflect the mixing
ratios (n, x-axis). (c) Comparison of the error in proteoform ratios inferred by HIquant and ratios
inferred from the precursor ion areas and the reporter ion (RI) ratios.
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Figure 3
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Figure 3 | HIquant accurately infers stoichiometries and confidence intervals across PTM site
occupancies of histone 3. (a) Histone 3 peptides were quantified by SRM across 7 perturbations,
and the fractional site occupancies for K4 methylation estimated by two methods: Estimates in-
ferred by HIquant without using external standards are plotted against the corresponding estimates
based on MasterMix external standards with known concentrations (Creech et al., 2015). Each
marker shape corresponds to the PTM site(s) shown in the legend; methylation is denoted with
“me” and acetylation with “ac” followed by the number of methyl/acetyl groups. (b) The valida-
tion method from (a) was extended to another set of more complex fractional site occupancies on
K9 methylation and K14 acetylation.
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Supplemental Figure 1
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Figure S1 | Model for inferring stoichiometries among proteoforms and paralogous proteins
independently from peptide-specific biases. (a) One shared (X1) and two unique (X2 and X3)
peptides from the two paralogs of ribosomal proteins L6 illustrate the simplest case of HIquant.
HIquant models the peptide levels measured across two conditions (~x) as a supposition of the
protein levels (~p), scaled by unknown peptide–specific nuisances (z). These coupled equations
can be written in a matrix form whose solution infers the P1/P2 stoichiometry independently from
the nuisances (z). (b) The shared and unique peptides of proteoforms (as illustrated by PDHA1
phospho-proteoforms) can be modeled as in panel (a); (c) The matrix system from (a) generalizes
to K proteoforms (and homologous proteins) with M peptides quantified across N conditions. In
many, albeit not all, cases an optimal and unique solution can be found, even in the absence of
unique peptides. See Supplemental Information for details.
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