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Summary

During in vitro differentiation, pluripotent stem cells undergo extensive remodeling of their gene
expression profile. While studied extensively at the transcriptome level, much less is known about
protein dynamics. Here, we measured mRNA and protein levels of 7459 genes during differentiation of
embryonic stem cells (ESCs). This comprehensive data set revealed pervasive discordance between
mRNA and protein. The high temporal resolution of the data made it possible to determine protein
turnover rates genome-wide by fitting a kinetic model. This model further enabled us to systematically
identify dynamic post-transcriptional regulation. Moreover, we linked different modes of regulation to
the function of specific gene sets. Finally, we showed that the kinetic model can be applied to single-
cell transcriptomics data to predict protein levels in differentiated cell types. In conclusion, our
comprehensive data set, easily accessible through a web application, is a valuable resource for the

discovery of post-transcriptional regulation in ESC differentiation.

Keywords

embryonic stem cells, in vitro differentiation, gene regulation, transcriptomics, proteomics, kinetic

modeling, integration with single-cell transcriptomics, web application for data exploration
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Introduction

Much of the medical potential of pluripotent stem cells is due to their ability to differentiate in vitro into
all tissue types of the adult body (Soldner and Jaenisch, 2012). While tremendous progress has been
made in guiding cells through successive lineage decisions, the gene regulatory mechanisms
underlying these decisions remain largely unknown. This gap in knowledge hampers the streamlining
and acceleration of differentiation protocols. A large body of work has focused on transcriptional
regulation, charting transcriptome changes during differentiation, most recently down to the single-cell
level (Klein et al., 2015; Loh et al., 2016; Semrau et al., 2016) These studies assumed implicitly that
mRNA levels are a good proxy for protein levels. Mounting evidence suggests that this is not a good
assumption for mammalian systems, where mRNA and protein levels were found to correlate only
moderately (Lu et al., 2009) (Kristensen et al., 2013; Peshkin et al., 2015; Schwanhausser et al.,
2011). Where the discordance between protein and mRNA expression originates and what the
biological function might be are long-standing and controversially discussed issues (Liu et al., 2016;
Vogel and Marcotte, 2012). Here we study the relationship between mRNA and protein expression in
the context of in vitro differentiation, a highly dynamic process in which gene regulation at the protein

level likely plays an important role (Sampath et al., 2008).

Results

Measurement of transcriptome and proteome dynamics during retinoic acid driven differentiation

We used retinoic acid (RA) differentiation of mMESCs as a generic model for in vitro differentiation.
Previously, we characterized this differentiation assay in detail at the transcriptional level by single-cell
RNA-seq (Semrau et al., 2016). In particular, we have shown that within 96 h of RA exposure, mESCs
bifurcate into an extraembryonic endoderm-like and an ectoderm-like cell type (XEN and ECT
respectively). Here we collected samples of the mixed population during an RA differentiation time
course as well as the two final, FACS-purified differentiated cell types at 96 h (Fig. 1a). For each time
point or cell type we quantified poly(A) RNA by RNA-seq and protein expression by tandem mass tag
(TMT) labeling followed by tandem mass spectrometry (MS/MS). In total, we obtained both RNA and
protein expression for 7459 genes (Supplementary Fig. 1a). Protein levels were quantified with low
technical error (Supplementary Fig. 1a) and high reproducibility between protein fold changes
measured in biological replicates (Pearson’s r = 0.92, Supplementary Fig. 1b). Moreover, the XEN-like
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cells measured here were similar to embryo derived XEN cells in their proteome (Mulvey et al., 2015)

(r = 0.65, Supplementary Fig. 1c).

Correlation between mRNA and protein levels is moderate

To explore the relationship between mRNA and protein levels we first correlated the two expression
levels across genes for individual time points or cell types (sample-wise correlation). In mESCs (Oh
time point) Pearson correlation between mRNA and protein was 0.57 (Fig. 1b). Similar values have
been reported in other mammalian systems (de Sousa Abreu et al., 2009; Jovanovic et al., 2015;
Schwanhausser et al., 2011). Sample-wise correlation was approximately the same for all samples,
including the purified differentiated cell types (Fig. 1¢). Low mRNA-protein correlation was thus not cell
state dependent. Importantly, a low sample-wise correlation does not exclude the possibility that
relative changes in protein levels during differentiation closely follow relative changes in mRNA levels.
To quantify the concordance between mRNA and protein dynamics we calculated their correlation
across time for individual genes (gene-wise correlation, Fig. 1d-e). Some genes, like the pluripotency
factor Rex1 (Zfp42) indeed exhibited a high correlation between mRNA and protein (r = 0.93 for
Rex1). Numerous genes, like the ribosomal protein Rps6, for example, did not exhibit any strong
correlation between protein or mMRNA (r = 0 for Rps6). Strikingly, we also observed many genes with
anti-correlated profiles, like Arpc1a (r = - 0.91) or Arvef (r = - 0.90). Such highly negative correlations
do not seem to be a result of technical noise in protein quantification, since multiple distinct peptides of
the same protein show similar trends (Supplementary Fig. 1d). Overall, the distribution of gene-wise
correlations, while peaking close to 1, had a long tail towards -1 (Fig. 1e). This result clearly shows

that mMRNA dynamics are in general not a good predictor for protein dynamics during differentiation.

Classification by dominant temporal trends visualizes widespread discordance between mRNA and
protein

Having discovered that mRNA and protein dynamics are in general dissimilar we wanted to reveal the
main trends in expression dynamics and study how they differ between mRNA and protein. To that
end we used singular value decomposition (SVD) to decompose an expression profile into a weighted
sum of generic profiles, called eigengenes (Fig. 2a). In contrast to other classification methods, SVD
allows us to discriminate systematically between the main trend (the dominant eigengene) and
smaller, additional fluctuations (Fig. 2b). The first three eigengenes, which corresponded to monotonic,
transient or oscillatory trends, explained 76% and 85% of the variance in mMRNA and protein

expression, respectively (Fig. 2c). mRNA eigengenes were more dynamic than protein eigengenes
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88 (Supplementary Fig. 1e), which reflects the buffering of mMRNA dynamics by protein synthesis and
89  degradation (Liu et al., 2016) (Jovanovic et al., 2015). Classification of all genes by their dominant
90 mRNA and protein eigengenes (which reflect the main temporal trends) revealed widespread

91 discordance (Fig. 2d). While there was a statistically significant enrichment of genes with similar

92  dominant mRNA and protein eigengenes (p-value < 1E-5), most genes (60%) had discordant mRNA

93  and protein dynamics.

94 A simple kinetic model partially explains the mRNA-protein discordance for the majority of genes

95 The temporal delay between mRNA and protein eigengenes (Fig. 2a) sparked the hypothesis that the

96 delay inherent to protein synthesis and degradation might cause much of the observed discordance.

97 To pursue this hypothesis we modeled protein turnover using a simple birth-death process with

98 constant protein synthesis and degradation rates (Tchourine et al., 2014) (Peshkin et al., 2015)

99 (Methods, Fig. 3a). In our model the synthesis rate ks lumps all processes related to protein production
100 (translation initiation, elongation, etc.) while the degradation rate kq represents all processes leading to
101 a reduction in protein levels (dilution due to cell division, active degradation, etc.). To avoid overfitting,
102  we also considered simpler models, which correspond to cases in which a protein is only synthesized,
103 only degraded or completely constant (Fig. 3b). To select among these models, we employed the
104 Bayesian Information Criterion (BIC), a score that penalizes the fit according to the number of
105 parameters (Methods). To reveal whether there is a connection between a certain model and specific
106 molecular functions, we performed GO term enrichment analysis. This analysis revealed that the
107 “degradation only” model was enriched for genes with a role in blastocysts development and inner cell
108 mass proliferation (Supplementary Fig. 2a). These genes are likely involved in preserving the
109 pluripotent state, as exemplified by the pluripotency factor Nanog. Degradation of the corresponding
110 proteins is crucial for the timely exit from pluripotency. GO term enrichment analysis also showed that
111 the “synthesis only” model was enriched for genes involved in neuron development and mesenchymal
112  cell development. These genes thus likely have specific functions in differentiated cell types and hence
113 must be synthesized quickly to ensure proper function. An example of such a gene is Lamb1, which is
114 highly expressed in XEN cells. This analysis shows that the different regulatory modes identified by
115 our model correspond to specific functions in differentiation.

116 We next wanted to evaluate the validity of our model by comparison with relevant data sets from the
117 literature. Protein half-lives (Supplementary Fig. 2b) calculated from the degradation rates were in the

118 same range as previously reported values for other systems (Peshkin et al., 2015; Schwanhausser et
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119 al., 2011). Synthesis rates were positively correlated with translational efficiencies determined from
120 ribosome profiling in mMESCs (Supplementary Fig. 2c) (Ingolia et al., 2011). The inferred kinetic rates
121 are thus biologically meaningful.

122 In order to assess how far our kinetic model can explain the observed protein-mRNA discordance we
123 calculated the correlation between measured and predicted protein levels (Fig. 3c). These correlations
124 were sharply peaked close to one, which means that our simple model is able to explain a large

125 portion of the observed mRNA-protein discordance. This discordance is likely only transient since

126 protein-to-mRNA ratios differed most from their equilibrium value (keq = ks/Kq ) in the beginning but

127 approached it over time (Supplementary Fig. 2d). This observation supports our conclusion that the
128 observed mRNA-protein discordance during differentiation is largely a transient, dynamic imbalance

129 caused by delayed protein synthesis and degradation.

130 The CDS/ 3°'UTR mRNA expression ratio is a modulator of the synthesis rate

131 We next sought to further refine our kinetic model and explore whether we could find predictors of
132 protein abundance. In that respect we were intrigued by a recent report that connected the ratio of
133 mRNA expression from the coding sequence (CDS) and 3’ untranslated region (UTR) to protein

134  abundance (Kocabas et al., 2015). In our data sets, the CDS/3’'UTR mRNA expression ratio w also
135 had a non-trivial relationship with protein levels (Supplementary Fig. 2e). Consequently, we included w
136 in our model as a modulator of the synthesis rate (Fig. 3d, Methods). Again, using the BIC to

137 determine whether using an additional free parameter is warranted by the improvement of the fit, we
138  found that 492 genes were fit optimally by the extended kinetic model (Fig. 3e). In the cases where it
139  was optimal the extended model provided a substantial improvement over the basic model (Fig. 3f).
140 For roughly half of those genes, w has a positive effect on protein synthesis and a negative effect on
141 the other half (Supplementary Fig. 2f). While the molecular mechanism relating w to the protein

142 synthesis rate is not yet known, our analysis shows that w is an interesting predictor that should be

143 explored in future studies of protein dynamics.

144 Failure of the kinetic model reveals dynamic post-transcriptional regulation

145 Despite its success in explaining the mRNA-protein discordance overall, our kinetic model does not fit
146 the dynamics of all quantified proteins. We identified 1232 genes with a poor mRNA-protein correlation
147  thatis not appreciably improved by any of the kinetic models (Supplementary Fig. 3a). Due to the

148 buffering of MRNA dynamics when synthesis and degradation rates are constant, the model fails in

149 particular when the protein profile is more dynamic than the mRNA profile (Supplementary Fig. 3b).
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150 Importantly, the genes that are not fit well by our model are very similar to the full data set in their

151 protein reliabilities (medians: 0.970 versus 0.972) and measurement errors (median SEM: 0.121

152  versus 0.115). Hence, technical noise is in general not the reason for the lack of a good fit. Rather, the
153 model fails due to the assumption that kinetic rates are constant. Consequently, we consider genes
154 that are not fit well by the model to be dynamically regulated. We sought to find sets of such genes
155 that potentially share regulatory features. To this end we again used the classification by dominant
156  eigengenes (Supplementary Fig. 3c). As an example, we focused on a class of genes with relatively
157 simple dynamics: monotonically increasing mMRNA and a transient increase in protein expression

158 (highlighted in Supplementary Fig. 3c). Notably, we discovered that genes belonging to the MAPK

159 pathway were enriched in this particular class (ConsensusPathDB, adjusted p-value = 1.8E-3,

160  Supplementary Fig. 3d). This suggests that genes of the MAPK pathway, which is highly relevant for
161 the differentiation of MESCs (Kunath et al., 2007), are regulated dynamically at the protein level. This
162 analysis exemplifies that we can systematically identify sets of genes that are dynamically regulated at

163 the protein level, likely by common mechanisms.

164 Sets of genes with different functions in differentiation show distinct regulatory modes

165 We next wanted to concentrate further on the regulation of gene sets that are relevant for embryonic
166  stem cell differentiation. To that end, we defined sets of markers for the pluripotent state, XEN cells,
167 and ECT cells based on differential mRNA expression (Supplementary Fig. 4a), which were confirmed
168 by GO term enrichment (Supplementary Fig. 4b). As a fourth gene set we considered ribosomal

169 proteins since it has been shown previously that the translational state changes dramatically during
170  differentiation (Sampath et al., 2008). For these 4 gene sets we calculated the average mRNA and
171 protein profiles, correlation between mRNA and protein, classification by dominant eigengene and

172 inferred synthesis and degradation rates for the genes that are fit optimally by the full kinetic model
173  (Fig. 4a). This analysis of gene sets is also available on the companion website. Pluripotency markers
174  were in general down regulated at the mRNA level (per definition) but also at the protein level.

175 Correspondingly, we found this set to be enriched in the “degradation only” kinetic model while the
176 “synthesis only” model is underrepresented (Supplementary Fig. 4c). This observation is consistent
177  with the fact that pluripotency genes have to be down-regulated quickly to allow for a timely exit from
178 pluripotency. Nevertheless, there were some genes that showed a substantial increase in protein

179 expression and consequently had a negative correlation between measured mRNA and protein (see

180 Supplementary Fig. 4d for examples). XEN and ECT markers were in general upregulated, where ECT
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181 markers came up before XEN markers, as shown by us previously (Semrau et al., 2016). In contrast to
182  the set of pluripotency markers, XEN and ECT genes showed a high level of concordance between
183 mRNA and protein, as immediately obvious from the eigengene classification. Correspondingly, both
184 gene sets were enriched for high correlation between mRNA and protein. Additionally, XEN markers
185  were enriched for the “synthesis only” model (Supplementary Fig. 4b). This might be related to the fact
186  that XEN cells have to produce high levels of extracellular matrix proteins(Mulvey et al., 2015), like
187 laminin (Lamb1) or collagen (Col4a2) . Consequently, these proteins must be synthesized in a timely
188 manner to ensure the proper function of the XEN cells. All in all, it seems that cell type specific

189  markers defined at the mRNA level could be confirmed at the level of protein and that for these genes
190 protein expression closely follows mMRNA expression. Compared to the gene sets discussed so far,

191 ribosomal protein (RP) genes showed a remarkable extent of discordance between mRNA and protein
192 expression. Eigengene classification revealed that many RP genes had protein profiles that were more
193 dynamic than their mRNA counterparts. Correspondingly, RP genes were enriched for low correlation
194 between mRNA and protein (p-value = 3.3E-2). As cells differentiated, the protein levels of RP genes
195  decreased, consistent with reduced cell division rates. The rate of decrease in abundance, however,
196  was RP specific. Thus, it will be interesting to isolate ribosomes and analyze the extent to which these
197 RP dynamics reflect ribosome remodeling and specialization (Slavov et al., 2015). In summary, we
198 have shown that the 4 analyzed gene sets follow distinct regulatory modes that can be related to

199 biological functions.

200 The kinetic model can be applied to single-cell transcriptomics data to predict protein levels in

201 differentiated cell types

202 In the experiment presented here, the existence of good antibodies for highly expressed surface

203 markers allowed us to purify differentiated cells at 96 h and profile their proteome. For earlier time
204 points or many other differentiation assays such an approach is difficult or even impossible. By

205 contrast, single-cell transcriptomics methods can be applied to any differentiation system. Hence, we
206  would like to use such data sets to predict protein levels in subpopulations. To that end, we extracted
207 cell type specific mMRNA dynamics during differentiation from our earlier single-cell RNA-seq

208 measurement of the system (Semrau et al., 2016). We then applied our kinetic model to this data set
209  to predict protein levels in the differentiated cell types at 96 h (Fig. 4b, Methods). Our prediction was
210 clearly superior to a prediction that used only bulk RNA-seq measurements and protein-to-mRNA

211 ratios (Edfors et al., 2016) (Fig. 4c). We have thus demonstrated that our kinetic model with
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212 parameters learned from bulk measurements can be applied to single-cell transcriptomics data to

213 predict cell type specific protein levels.

214 We finally compared the differentiated cell types directly with each other. Overall, the correlation

215 between mRNA and protein changes was poor and we identified a few outlier genes in particular that
216 showed extreme behavior (Fig. 4d). These outliers had comparable protein expression in XEN and
217 ECT cells (at most 2-fold difference) but mRNA expression was much lower in XEN cells (up to 19-
218  fold). Notably, these outliers are strongly enriched for imprinted genes (hypergeometric test, p-value =
219 2.3E-10). It is a well-known fact that some imprinted genes are mono-allelically expressed in extra-
220 embryonic tissues (Miri and Varmuza, 2009). Yet, the observed down-regulation goes well beyond a
221 two-fold change expected for mono-allelic expression. This observation demonstrates that our data set

222 can be used to discover significant differences in gene regulation between differentiated cell types.

223  Discussion

224 Here we systematically analyzed the dynamics of mRNA and protein expression during mESC

225 differentiation. We observed that absolute levels of protein and mRNA are only moderately correlated
226 in the steady (pluripotent) state, consistent with results in other mammalian systems (Schwanhausser
227 et al., 2011) (Wilhelm et al., 2014) (Edfors et al., 2016). Importantly, low correlation does not

228 immediately imply a significant role of gene-specific regulation as technical noise tends to reduce the
229 observed correlation and conventional correction schemes typically ignore the effect of systematic,
230  correlated errors (Csardi et al., 2015). Edfors et al. showed recently that the protein-to-mRNA ratio
231 (PTR) for a specific gene is constant across several tissues (Edfors et al., 2016). While the PTR might
232 allow the prediction of absolute protein levels, it is unable to capture relative changes over time or
233 relative differences between tissues (Franks et al., 2017; Silva and Vogel, 2016).

234 In this study we found widespread discordance between mRNA and protein dynamics during mESCs
235 differentiation. Such discordance has been observed recently in several systems, in particular:

236  Xenopus development (Peshkin et al., 2015), C. elegans development (Griin et al., 2014),

237 macrophage differentiation (Kristensen et al., 2013) and mESC differentiation (Lu et al., 2009). While
238 this discordance is typically interpreted as a sign of (post) translational regulation (Griin et al., 2014)
239 (Lu et al., 2009), theoretical work showed that a simple delay between mRNA and protein production
240  can lead to a reduction in gene-wise correlation (Gedeon and Bokes, 2012) (Munsky and Neuert,

241 2015) . Here we showed here that a simple model with constant kinetic rates, substantially reduces the
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242  discordance for 63% of discordant genes (Supplementary Fig. 3a). The same kinetic model explained
243 protein dynamics of a third of all genes during stress response in yeast (Tchourine et al., 2014) and of
244  75% of all genes in Xenopus development (Peshkin et al., 2015). Consistently, this simple model thus
245  explains discordance for significant proportions of the genome. We also found that the dynamics of
246  48% of all genes are best fit by a model that either includes only protein synthesis or degradation. A
247 similar observation was made analyzing the stress response in yeast (Tchourine et al., 2014). We
248 speculate that the different reduced models correspond to different regulatory mechanisms, as

249  suggested by the enrichment of different GO terms and gene sets reported here. We further showed
250 that protein-mRNA ratios were transiently out-of-steady-state on the way to a new equilibrium in the
251 differentiated cell types. The observed discordance between mRNA and protein thus most likely

252 reflects a transient, dynamic imbalance due to delayed protein synthesis and degradation. We further
253 extended the basic kinetic model by adding the CDS-3'UTR mRNA expression ratio as a useful new
254 predictor for the protein synthesis rate. We speculate that the underlying molecular mechanism is

255 related to a change in the abundances of mMRNA isoforms, which are believed to have different

256  translation rates (Wong et al., 2016). Genes that were not fit well by the kinetic model, are by our

257 definition dynamically regulated at the protein level, as constant synthesis and degradation rates are
258 insufficient to describe the observed kinetics. This approach is complementary to the recently

259 developed PECA method that can be used to reveal regulatory events at the mRNA and protein level
260  (Cheng et al., 2016).

261 Our in-depth analysis of several gene sets revealed that cell type specific genes show a high

262 concordance between mRNA and protein dynamics, while for RP genes the correlation is much lower.
263 This result is reminiscent of a recent report that studied the stimulation of dendritic cells (Jovanovic et
264  al., 2015). Jovanovic et al. found that mRNA levels explain 90% of protein fold changes after

265 stimulation and proteins involved in the induced immune response were particularly enriched for this
266 regulatory mode. The dynamics of “housekeeping proteins” (including RPs), on the other hand, were
267 dominated by changes in protein synthesis and degradation rates. Similarly, Kristensen et al. reported
268 that mMRNA abundance was the best predictor for proteins that were upregulated during differentiation
269 of monocytes to macrophage-like cells (Kristensen et al., 2013). Together with these previous reports
270 our study supports a model in which mRNA fold changes set the level of newly produced proteins that
271 have crucial, specific functions in the new cell state or cell type. Regulation at the level of protein

272 turnover, on the other hand, is used to adapt the existing proteome. Importantly, we also showed that

273 some pluripotency genes, defined as such by being down-regulated at the mRNA level, showed
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274 increasing protein expression. This result cautions against defining markers for cell states or cell types
275  solely based on mRNA expression.

276 Finally, we applied our kinetic model, with model parameters learned in this study, to our earlier single-
277  cell transcriptomics measurement of RA differentiation. Our model successfully predicted the

278 proteomes of differentiated cell types that arise during RA differentiation. This approach thus makes it
279 possible to measure the proteomes of cell types that cannot be purified, for example due to the lack of
280  suitable antibodies.

281 In summary, this study provided the first in-depth, integrated analysis of mMRNA and protein dynamics
282 during mESC differentiation. All measured data are provided in a convenient web application. We

283 hope that this application will facilitate future studies of specific gene sets or global relationships, for

284 example between sequence features and protein regulation (Vogel et al., 2010).
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397  Figure captions

398 Figure 1 mRNA and protein expression correlate poorly during mESC differentiation

399  (A) Experimental setup. (B) mRNA versus protein expression of 7459 genes in mESCs. Each data

400 point is an individual gene. Red lines indicate contour lines of equal density. (C) Sample-wise Pearson
401 correlation between mRNA and protein for all samples. The solid line indicates the average of all time
402 course samples. The grey area indicates the 5% rejection region for all samples being identical (see
403 Methods). Error bars: SEM. (D) mRNA versus protein expression at all time points for nine example
404  genes. Pearson’s correlation r is indicated for each gene. The line and grey area indicate the linear
405 regression fit and 95% CI, respectively. Error bars: SEM. (E) Distribution of the gene-wise Pearson
406  correlation between mRNA and protein. Numbered arrows indicate the position of the examples shown

407 in D. See also Supplementary Figure 1.

408 Figure 2 Classification of temporal mRNA and protein expression profiles by dominant trends reveals
409 widespread discordance

410 (A) First six eigengenes of mMRNA and protein expression profiles. (B) Reconstruction of mMRNA and
411 protein expression profiles from the top three eigengenes of an example gene. (C) Cumulative

412  variance explained by the eigengenes for mRNA and protein profiles. (D) Classification of all genes by
413  their dominant mMRNA eigengene (columns) and protein eigengene (rows).

414  See also Supplementary Figure 1.

415

416  Figure 3 Simple kinetic models of protein synthesis and degradation explain mRNA-protein

417  discordance.

418  (A) Kinetic model. ks = synthesis rate constant; k,; = degradation rate constant. (B) Example fits of the
419  full model (ks >0, ky >0) and the three reduced models: synthesis only (ks > 0, kq =0), degradation only
420 (ks =0, ks > 0) and degenerate (ks = ky =0). Percentages indicate the fraction of genes fit best by the
421 respective model. (C) Distribution of Pearson correlation between measured protein expression and
422 mMRNA expression or predicted protein expression. (D) Extended kinetic model. ky(t) = time-dependent
423  synthesis rate. (E) mRNA expression, log ratio of expression from CDS and 3'UTR and protein

424  expression profiles of two example genes with fits of the extended model (solid line) or the basic

425  model (dashed line). (F) Distribution of Pearson correlation between measured protein expression
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426 and: mRNA expression, protein expression predicted by the basic model or the extended model. Error
427 bars in (B) and (E): SEM.
428  See also Supplementary Figures 2 and 3.

429

430 Figure 4. Classification and kinetic modelling reveal differences between gene sets involved in

431 differentiation and between differentiated cell types.

432  (A) Comparison of four gene sets that are relevant for differentiation. Log, fold change (L2FC) of

433 mRNA and protein expression are shown for individual genes (colored) and the set average (black).
434 The p-value in the classification matrix is based on picking genes at random from all genes (chi-

435  squared test). (B) mMRNA expression of XEN and ECT subpopulations (from single cell data) and the
436 mixed populations (bulk sample). Protein expression in XEN and ECT is predicted by applying the
437 kinetic model to the single cell data. Alternatively, at 96 h we also predicted protein based on the

438 protein-to-mRNA (PTR) ratio. MPI = Mean peptide intensity. (C) Sum of squared residuals (SSR) of
439 the kinetic model-based prediction compared to the PTR-based prediction for the XEN and ECT

440 marker genes. (D) mRNA and protein expression in XEN cells relative to ECT cells. Outlier genes are
441 highlighted with a dark background and imprinted genes are shown in red (obtained from

442  www.geneimprint.com, Oct-11-2016). Imprinted genes are significantly enriched in the outlier gene set
443  (hypergeometric test: p-value = 2.72e-10).

444  See also Supplementary Figure 4.
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445 Methods

446 Cell culture

447 E14 mouse embryonic stem cells were cultured as previously described (Semrau et al., 2016). Briefly,
448  cells were grown in modified 2i medium (Ying et al., 2008): DMEM/F12 (Life technologies)

449 supplemented with 0.5x N2 supplement, 0.5x B27 supplement, 4mM L- glutamine (Gibco), 20 ug/mi
450 human insulin (Sigma-Aldrich), 1x 100U/ml penicillin/streptomycin (Gibco), 1x MEM Non-Essential
451 Amino Acids (Gibco), 7 ul 2-Mercaptoethanol (Sigma-Aldrich), 1 uM MEK inhibitor

452  (PD0325901,Stemgent), 3 uM GSK3 inhibitor (CHIR99021, Stemgent), 1000 U/ml mouse LIF

453  (ESGRO). Cells were passaged every other day with Accutase (Life technologies) and replated on

454  gelatin coated tissue culture plates (Cellstar, Greiner bio-one).

455 Differentiation and sample collection

456  Retinoic acid induced differentiation was carried out exactly as describe before (Semrau et al., 2016).
457 Prior to differentiation cells were grown in 2i medium for at least 2 passages. Cells were seeded at 2.5
458 x 10° per 10 cm dish and grown over night (12 h). Cells were then washed twice with PBS and

459  differentiated in basal N2B27 medium (2i medium without the inhibitors, LIF and the additional insulin)
460  supplemented with 0.25 uM all-trans retinoic acid (RA, Sigma-Aldrich). Spent medium was exchanged
461 with fresh medium after 48 h.

462  To collect samples, cells were dissociated with Accutase. RNA was extracted from half of the sample
463  (RNeasy, Qiagen) and the purified RNA was stored at -80C until RNA-sequencing was performed. The
464 other half of the sample was flash frozen in liquid nitrogen and stored at -80C until mass spectrometry

465  was performed.
466 Fluorescence-activated cell sorting

467 FACS sorting of the differentiated cell types and quantification of the cell type frequencies was carried

468 out exactly as described previously (Semrau et al., 2016).
469 RNA sequencing and mRNA quantification

470 Library preparation and RNA sequencing
471 The libraries for RNA sequencing were prepared under standard conditions using lllumina’s TruSeq

472  stranded mRNA sample preparation kit. The libraries were sequenced using lllumina HiSeq 3000 ; 40
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473 basepair long, stranded single-end reads were sequenced at an average read depth of 40 million

474 reads per sample. The data is available through GEO.

475 Read alignment

476  An RSEM-reference was created using RSEM v1.2.28 (Li and Dewey, 2011) with the lllumina

477 iGenome GRCm38 reference using the standard settings. Next, the lllumina adapter was trimmed

478  from the reads with cutadapt v1.8.3 (Martin, 2011) and low quality bases with sickle v1.33 (Joshi et al.,
479  2011). Finally the reads were aligned with RSEM v1.2.28 (Li and Dewey, 2011) and Bowtie 2 v2.2.6
480 (Langmead and Salzberg, 2012) using standard settings accept for “--sampling-for-bam --fragment-
481 length-mean 40”. The option “--sampling-for-bam” was applied so each read appears in the BAM file
482  once. This enabled the estimation of the CDS and 3'UTR counts by summarizeOverlaps from the

483 package GenomicAlignment v1.8.4 (Lawrence et al., 2013).

484 Gene quantification

485 mMRNA expression was quantified by several different methods depending on the application.

486 Transcripts per million (TPM) was calculated by RSEM and was used when comparing between genes
487  since it is corrected for gene length. The more variance stabilized regularized log counts (rLC) were
488 determined by applying the rlog function from DESeq2 v1.12.3 (Love et al., 2014) on rounded

489  expected counts obtained from RSEM. From this regularized counts (rC) were obtained by: rC = 2"°,
490 rLC and rC are corrected for overdispersion in low-read genes and are therefore used when

491 comparing one gene across multiple samples. CDS and 3'UTR counts were determined by splitting
492  the gene annotation file (GTF) with the GenomicFeatures package v1.26.0 (Lawrence et al., 2013) into
493 CDS and 3'UTR for every Ensembl gene ID. Next, the number of reads on the CDS and 3'UTR

494  features from the aligned BAM files were counted with summarizeOverlaps with default options.

495  “Union”, the default option for mode, discards reads, if they overlap with both CDS and 3’'UTR. The

496 ratio w (CDS / 3’'UTR) was only calculated for genes with at least 10 reads for CDS and 3’'UTR in

497 every sample.

498 Differentially expressed genes

499 Differentially expressed genes (DEGs) were determined by DESeq2 v1.12.3 (Love et al., 2014) on the
500 rounded expected counts obtained from RSEM at a false discovery rate (FDR) of 10%. The gene set
501 ‘pluripotency genes’ were DEGs that were down-regulated when comparing the samples Oh (n=2) and

502 96h (n=2). XEN- and ECT-marker gene sets were DEGs that were up-regulated when comparing the
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503 samples Oh (n=2) with XEN (n=1) or ECT (n=1) respectively. Additionally, XEN- and ECT-markers

504 have at least a 2-fold difference in expression between the two cell types.

505 Mass spectrometry and protein quantification

506 Sample preparation

507 Pelleted cells were lysed in 400 ul RIPA buffer, except for the sorted cells, which were lysed in 200 ul
508 RIPA buffer. Volumes of cell lysate corresponding to 100 ug protein per sample were digested with
509  trypsin using a modified FASP protocol (Wisniewski et al., 2009). Subsequently each sample was
510 labeled with TMT 10-plex reagent (Prod# 90061, Thermo Fisher, San Jose, CA) according to the

511 manufacturer’s protocol. All labeled samples were combined into a set-sample.

512 Mass spectrometry

513 The labeled set—sample was fractionated by electrostatic repulsion-hydrophilic interaction

514 chromatography chromatography (ERLIC) run on an HPLC 1200 Agilent system using PolyWAX LP
515  column (200x2.1 mm, 5 ym, 30nm, PolyLC Inc, Columbia, MD) and a fraction collector (Agilent

516  Technologies, Santa Clara, CA). Set-samples were fractionated into a total of 40 ERLIC fractions.

517 Each ERLIC fraction was subsequently further separated by online nano-LC and submitted for tandem
518 mass spectrometry analysis to both LTQ OrbitrapElite or Q exactive high field (HF). One third of each
519  fraction was injected from an auto—sampler into the trapping column (75 um column ID, 5 cm length
520 packed with 5 um beads with 20 nm pores, from Michrom Bioresources, Inc.) and washed for 15 min;
521 the sample was eluted to analytic column with a gradient from 2 to 32 % of buffer B (0.1 % formic acid
522  in ACN) over 180 min gradient and fed into LTQ OrbitrapElite or Q exactive HF. The instruments were
523  settorunin TOP 20 MS/MS mode method with dynamic exclusion. After MS1 scan in Orbitrap with
524 60K resolving power, each ion was submitted to an HCD MS/MS with 60K resolving power and to CID

525 MS/MS scan subsequently. All quantification data were derived from HCD spectra.

526  Protein quantification

527 Relative peptide levels were estimated from reporter ion intensities measured at MS2 level. Only

528 peptides with co-isolation below 40 % were used for quantification. The intensities of all peptides

529 belonging to a Uniprot ID were averaged to form mean peptide intensity (MPI) for every protein. When
530 comparing different protein samples mean peptide intensities were normalized to the sample-mean to

531 form protein expression. Standard error of the mean (SEM) was calculated for every protein as
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532  follows: 1) for every peptide the intensities were averaged across the samples, 2) the SEM was

533 calculated from these mean-centered peptide intensities for every protein and sample.

534 Protein reliability

535 The protein reliability was calculated for genes with at least two peptides quantified. For each gene,
536 the peptides were randomly split into two groups and the MPI was calculated for each group as
537 described above. The correlation between the MPIs of the two peptide groups across the different

538  samples is defined as the reliability of the measurement of that protein.

539 Transcriptomics and proteomics integration

540 While transcripts were identified by Ensembl gene IDs, Uniprot IDs were used for proteins. To

541 integrate the two, we mapped 7681 out of 8515 Uniprot IDs to Ensembl gene IDs present in the RNA-
542  seq data using the idmapping file from the Uniprot website (15-Sept-2016). An additional set of Uniprot
543 IDs were mapped to Ensembl IDs using biomaRt v2.28.0 (Durinck et al., 2009). Some proteins have
544 more than one Ensembl ID mapping to it, therefore 33 Uniprot IDs were removed, Moreover, 92

545 Uniprot IDs mapped non-uniquely to Ensembl IDs and for these the protein intensities were

546 reevaluated based on Ensembl IDs. Finally, some genes were not considered because they were not
547 detected in all samples. This resulted in a total of 7489 genes based on Ensembl gene IDs, for which
548  we have matched mRNA and protein expression data in all samples. Additionally, we observed 3770

549 genes with at least 10 mMRNA reads in every sample but no detected protein.

550 Sample-wise correlation

551 We tested if the sample-wise correlation is constant during the differentiation time course using a

552 resampling approach. For each bootstrap a pseudo-sample was constructed consisting of every gene,
553 but with mRNA and protein expression randomly sampled from the different time points. The

554 correlations of 10,000 pseudo-samples were calculated to obtain a null distribution. Samples have
555  significantly different correlation if it falls below or above the 0.36 and 99.64 percentiles of the null

556  distribution respectively (a = 0.05, Bonferroni correction, grey area in Figure 1c).

557  Gene-wise correlation

558  To define a threshold for low gene-wise correlation we applied a shuffling approach (Tchourine et al.,
559 2014). We determined the Pearson correlation for all possible permutations of the mRNA and protein
560 expression for every gene. More than 95% of all Pearson correlation values obtained in this way were

561 lower than 0.7, which we therefore set as the threshold between low and high correlation.
20


http://dx.doi.org/10.1101/123497

bioRxiv preprint first posted online Apr. 3, 2017; doi: http://dx.doi.org/10.1101/123497. The copyright holder for this preprint (which was
not peer-reviewed) is the author/funder. All rights reserved. No reuse allowed without permission.

562  Expression profile classification
563 mRNA and protein expression were arranged in matrix form rows corresponding to genes and the
564 columns corresponding to time course samples. These matrices were standardized by rows. Next,

565  standard singular value decomposition (SVD) was performed separately for mRNA and protein (Wall
566 et al., 2003). From this analysis, we obtain n eigengenes I7k where k € 1,...,n and n is the number of

567 time points. Using these eigengenes we can reconstruct the standardized expression of gene i, as
568  follows: )?l- = Yk Ml-kl7k, where M;, is the contribution of eigengene k to the standardized expression of

569 gene i. We defined the eigengene with the biggest contribution to )?l- as the dominant eigengene. To
570  determine if there is an enrichment of genes with concordant mRNA and protein eigengenes, we

571 calculated an empirical p-value based on a null distribution generated by bootstrapped (number of
572 bootstraps = 100,000). This null distribution was constructed under the assumption that the marginal
573  eigengene distributions of MRNA and protein are independent. Moreover, we defined a confident set
574 of genes with a bigger than median fold-change between the contribution of the dominant eigengene

575 and the second most contributing eigengene for both mRNA and protein.
576 Kinetic models of protein synthesis and degradation

577  Approximation of mRNA and CDS/3'UTR expression by natural cubic splines

578  To describe the mRNA, CDS and 3'UTR behavior in the kinetic model of protein synthesis and

579 degradation we approximated the expression with natural cubic splines. These splines were fit on the
580 mRNA expression and on the log, fold change (L2FC) of w, which we call w. The number of degrees
581 of freedom p used for the fits of every gene was 4 for mRNA expression and 3 for w expression.

582  These values were automatically determined as described by Storey et al. (Storey, 2005). Briefly, an
583  SVD was performed on the expression matrices of mMRNA and w and the first n eigengenes that

584  explain at least 60% of the variance were selected. For each of these eigengenes the optimal number
585  of degrees of freedom p; was selected by leave one out cross validation (LOOCV) and the largest p;
586  was used as the number of degrees of freedom p to fit the natural cubic splines for all the genes of the

587 expression matrix. The nodes of the cubic splines were equally spaced across the time course.

588 Kinetic rate parameters estimation
589  We model protein turnover as a birth-death process

dP(t)
dt

590 ke - R(t) — kg - P()
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591 where P(t)and R(t) are protein and mRNA expression respectively. The solution of this ordinary

592  differential equation (ODE) is given by:
604 P(t) = Pye kat 4+ ksf R(z) e7ka (t-D
0

593  where P, is the protein expression at t = 0 hours. The integral of this equation was estimated

594  numerically in R using the spline fits described above. We fit the model using gene specific

595 parameters Py, ks and k; with the Levenberg — Marquardt non-linear least squares algorithm, which is
596 implemented in the R package minpack.Im v1.2-0. Additionally, we fit models where we set k; = 0,
597 ks = 0or k; = kg = 0. For each successful fit we determined the Bayesian Information Criterion:

605 BIC = =21In(L) + k- In(n)

598  where L is the posterior likelihood of the fit, k is number of parameters in the model and n is the

599 number of time points. L is determined by:

606 L= [p(P(t)]d)

j=1
600  where 8 is the vector of inferred model parameters. The probabilities are estimated by assuming a
601 normal distribution around the observed protein expression with a standard deviation equal to the
602  SEM of the peptide intensities. The kinetic model with the lowest BIC was selected as the optimal
603 model.
607  Additionally, for the subset of genes for which we could determine w we constructed a model with a
608 time-dependent synthesis rate:

dP(t)
dt

612 = ky(t) - R®) — kg - P(t) =k, (1 + B w(®))-R({) — kq - P(t)

609  where k, describes the constant synthesis rate and 8 parameterizes the time-dependent modulation of

610 the synthesis rate by w. The solution of this ODE:

T

613 P(t) = Poe_kdt‘l'f (Ge + B 0(®)+R(@) - e~ka €-0)

0

611 was fit to the data in the same manner as above.

614 95% confidence region estimation

615  To estimate the 95% confidence intervals (Cls) for ks and kq we applied Wilk's theorem:

616 In(L()) = In (L(é)) - % Xiia
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617  where a is 0.05 and x7,_,is the value at which the cumulative chi-squared distribution with 1 degree of
618 freedom reaches 0.95. We varied ks and kqaround the obtained fit 8 to find the edges where Wilk’s
619 theorem holds. These edges where determined at 24 directions in the ks - kg solution plane to obtain a
620  crude 95% confidence region. The projection of this region on ks and kg defined CI;>* and CIS%, their
621 respective 95% Cls. Note that these intervals are typically much larger than the intervals obtained

622  when searching one parameter at a time. Genes with the full model (as determined by BIC), and with a
623  small CI;>” and CI;>" (each spanning less than a 10-fold range) were defined as the high-confidence

624  gene set. Additionally, for genes in this set we determined the protein half-life 7,, as

_ln2

625 =
d

626 Protein prediction of sorted populations

627 We applied our kinetic model to single-cell transcriptomics data of RA driven differentiation, which we
628 obtained previously (Semrau et al., 2016). We determined the mean expression of all cells, as well as
629  XEN and ECT subpopulations starting from the lineage bifurcation at 36 h. All three datasets thus

630 have identical expression up to 36 h. We then scaled the subpopulation data to the bulk data

631 measured here for every gene in the following way: 1) We standardized the single cell time course
632 data using the mean and standard deviation of the pooled single cell data, and 2) we scaled the

633 standardized single cell data to the bulk data using the mean and standard deviations of the bulk time
634  course. Next, we fit a natural cubic spline to the single cell data as before and applied the kinetic

635 model using Py, ks and kq learned from the bulk mRNA and protein measurements. We evaluated the
636 model performance by calculating the residuals between the predicted XEN and ECT protein

637 expression at 96 h and the bulk measurements of protein in the purified cell types.

638  An alternative way of predicting protein expression is by simply multiplying a gene’s protein-to-mRNA
639 ratio (PTR) with the gene’s mMRNA expression. We defined the PTR as the mean protein expression
640 divided by the mean mRNA expression during the time course. We predicted the protein expression of
641 the XEN and ECT populations at 96 h using the bulk mRNA of the respective sorted populations. We
642 used the sorted bulk data rather than the single cell data, because it is more accurate and we

643 therefore expect this to perform better. Like with the single cell predictions, we evaluated model

644 performance using the residuals of the PTR-predictions relative to the measured protein expression of

645 the sorted bulk data.
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646 Ribosomal protein gene list
647 The list of RPs was compiled as all Swiss-Prot proteins curated as ribosomal proteins in their

648 descriptions.

649 Eigengene dynamics
650 We quantified the dynamics of the eigengene profiles as the mean of the squared second derivatives
651 (roughness). The second derivatives were estimated numerically from three unequally spaced points

652 by this formula:

d’y 2y, 2y, 2y;

653 — = _
dx?  (xz —x1)(x3 — x1) (x3 — x5) (x5 — x4) (x3 — x2)(x3 — x1)

654  where x;, x, and x5 are adjacent time points and y;, y, and y;are the respective eigengene

655 intensities.

656 GO term enrichment

657 GO term enrichment was performed with the R package topGO v2.24.0 (Alexa et al., 2006) with the
658 classic algorithm. The genes were ranked using Fisher’'s exact test and deemed significant with an
659  FDR of 10%.

660

661 Accession humbers

662  The RNA-seq data has been deposited in GEO (ID: GSE9563). The raw MS data has been deposited
663 in MassIVE (ID: MSV000080461). A web application complementing this publication, which allows
664  convenient access to all data can be found here:

665 https://home.physics.leidenuniv.nl/~semrau/proteomics/

666 user name: upon request

667 password: upon request
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708

709  Supplementary Figure 1. Related to figures and 1 and 2. Protein quantification using
710  TMT labeling is robust and reproduces previous results on embryo-derived XEN cells.
711 mRNA eigengenes are more dynamic than protein eigengenes.

712

713 (A) From left to right: Venn diagram of the number of genes with quantified mMRNA and protein
714 levels (see Methods), distribution of the number of peptides used to quantify protein

715  expression, distribution of the coefficient of variation (CV, SD/mean) of the mean-centered
716  peptide intensities, distribution of the gene-wise protein reliability (Franks et al., 2017). The
717 7459 genes in the intersection are detected in all MRNA and protein samples.

718  (B) Protein expression of the 96 h sample (consisting of both XEN and ECT cells) compared
719  with a sample mixed in silico from the independently generated purified XEN and ECT cell
720 samples. L2FC: log, fold-change.

721 (C) Protein expression in XEN cells relative to ESCs as measured in this study compared with
722 in vivo derived XEN cells measured by Mulvey et al. (2015). Pluripotency- and XEN-marker
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723  gene sets were defined using a support vector machine learning algorithm. The pluripotency
724  setis significantly enriched in genes that are downregulated in our data (p-value = 4.0E-4) and
725  the XEN-marker gene set is enriched in genes that are upregulated (p-value = 1.4E-4, gene
726  set enrichment analysis).

727 (D) mRNA, protein and peptide expression for two genes with negative time-wise correlation:
728  Arcvf(r=-0.90) and Arpc1a (r=-0.91). 15 and 11 peptides, respectively, were quantified for
729  each gene. regC = regularized counts; MPI = mean peptide intensity.

730 (E) Roughness of mMRNA and protein expression eigengenes. The roughness of a profile is
731 defined as the average squared second derivative.

732
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Supplementary Figure 2. Related to figure 3. The kinetic models can be related to
biological functions and the inferred kinetic rates are biologically meaningful.

(A) Union of the top 10 significantly enriched cellular differentiation GO terms for genes fit best

by each of the four kinetic models. False discovery rate = 10%.

(B) Protein half life distribution for 1554 genes that were fit best by the full model (according to
the BIC) and have precise estimates of the rates (upper and lower bound of the 95%
confidence intervals (Cls) fall within a 10-fold range)

32


http://dx.doi.org/10.1101/123497

bioRxiv preprint first posted online Apr. 3, 2017; doi: http://dx.doi.org/10.1101/123497. The copyright holder for this preprint (which was
not peer-reviewed) is the author/funder. All rights reserved. No reuse allowed without permission.

743  (C) Translational efficiency (TE) in mESCs from Ingolia et al. (2011) versus our synthesis

744  rates. We show the rates for 1284 genes (intersection between data from Ingolia et al. (2011)
745  and the1554 genes shown in B). Boxplots represent the binned TE with whiskers indicating
746 1.5xIQR.

747 (D) Log1o protein to mMRNA ratio (PTR) versus equilibrium constant (keq = ks / Kq) for the 1554
748  genes described in B. Each data point is an individual gene. Genes that are at equilibrium
749  (PTR = keq) are on the 1:1 line (green). Inserts: PTR relative to keq across time are shown for
750  three example genes that are above, approximately on and below the 1:1 line.

751 (E) Ratio of CDS and 3’'UTR expression versus protein expression in the 96h sample relative
752  to ESCs. The genes with the highest CDS expression fold change are indicated in green. Solid
753 lines indicate linear regression fits. CDS = coding DNA sequence, 3'UTR = 3’ untranslated
754  region.

755  (F) Distribution of the parameter 3 of the extended model, which sets the strength of the

756  influence of the CDS-3’'UTR ratio on the synthesis rate. Shown are the values of 8 for the 492
757  genes that are improved by the extended kinetic model (according to the BIC).

758

33


http://dx.doi.org/10.1101/123497

bioRxiv preprint first posted online Apr. 3, 2017; doi: http://dx.doi.org/10.1101/123497. The copyright holder for this preprint (which was
not peer-reviewed) is the author/funder. All rights reserved. No reuse allowed without permission.

Mean (r?)
02 04 06 08

MRNA eigengene

AN AN

Pearson correlationr, .,
Predicted vs observed protein expression
o
(=]

P ()
’ e
’ )
v ()]
0.5 z GCJ
| Local density 300 600 900 D
Ve q-)

v
7 £
104,7 2
T T T T T @)
1.0 05 0.0 05 1.0 =
o

Pearson correlation r

meas

mRNA vs protein expression

C Number of genes _ D
1 2 4 8
mRNA eigengene

F‘I“’I"’I"\IMINIWIMI*’I“"

Map4k4

140 °

I7

r. [MP
3
o
re+
o

. 120
0.16

100

_
]

mRNA expr. [regC]
[ ]

L ]
£
Protein expr. [
o
=
B
]

o
)

0(‘5 2‘43‘64’8 7‘2 9‘6 06 2‘43‘64‘8 7‘2 9‘6
Time [hours] Time [hours]

Jund

Protein eigengene
TIEISIPIRISISRISL /|\
.

mRNA expr. [regC]
2
L ]
Protein expr. [MPI]
Bt
——i
4
——

06 243648 72 96 06 243648 72 96
Time [hours] Time [hours]

759
760  Supplementary Figure 3. Related to figure 3. Genes in the MAPK signaling pathway are
761 regulated dynamically at the protein level during differentiation.
762
763 (A) Pearson correlation between measured protein and mMRNA (rmeas) versus Pearson
764  correlation between measured and predicted protein (rpeq). Background coloring indicates:
765 concordant genes with (high rneas, blue), discordant genes that are not well-fit (Iow rmeas , low
766 fored » Fed) and discordant genes that are well-fit (Iow rmeas , high rpreq , green). Here we
767 consider genes with rneas < 0.7 to be discordant (see Methods). To assure the the model
768  prediction correlates substantially better with the measured protein than the measured mRNA
769  we require ryeq >= 0.8 for a gene to be considered well-fit.
770  (B) Dominant eigengene classification of all 7459 genes. The color of a tile indicates the mean
771  fraction of variance explained (mean r ) by the best-fitting kinetic model for genes with a
772  particular combination of dominant mRNA and protein eigengene.
773  (C) Dominant eigengene classification of the 368 genes that are not well-fit by the basic kinetic
774  model (red area of A) and exhibit a bigger than median fold-change between the contribution
775  of the dominant eigengene and the second most contributing eigengene. The color of a tile
776  indicates the number of genes with a particular combination of dominant mMRNA and protein
777  eigengene. Enrichment analysis revealed an enrichment of MAPK signaling pathway genes in
778  the tile highlighted in green (g-value = 1.8e-3).
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779 (D) mRNA and protein expression profiles of two genes from the tile highlighted in C. Error
780  bars: SEM. regC = regularized counts; MPI = mean peptide intensity.
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Supplementary Figure 4. Related to figure 4. The different subtypes of the kinetic model
are enriched in gene sets defined by the differentiation process

(A) Volcano plots (mRNA relative expression versus p-value for differential expression) for the
96 h sample, the ECT sample and the XEN sample. mRNA expression is always relative to the
0 h sample (ESCs). Genes colored in both red or green are significantly differentially
expressed with a false discovery rate (FDR) of 10%. Only genes colored red are considered
marker genes: pluripotency markers are down regulated in the 96 h sample, ECT and XEN
markers are upregulated and have a minimum fold change of 2 compared with the other
purified sample (see Methods).

(B) Union of the top 10 significantly enriched cellular differentiation GO terms for genes in
each of the three DE gene sets and the ribosomal genes. FDR = 10 %.
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797  (C) Overrepresentation (+ / blue) and underrepresentation (- / red) of the various subtypes of
798 the basic kinetic model in the gene sets from B. (D) Genes in pluripotency gene set with

799  upregulated protein expression. regC = regularized counts; MPI = mean peptide intensity.
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