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Abstract

Many studies have used chemostats and gene expression microarrays to characterize

the growth rate response of the buddying yeast (Saccharomyces cerevisiae) growing on

glucose carbon source (Hayes et al, 2002; Pir et al, 2006; Regenberg et al, 2006; Castrillo

et al, 2007; Brauer et al, 2008). These studies demonstrated a common growth rate

response (GRR) in continuous exponentially growing cultures, both aerobic and anaer-

obic and limited by different natural nutrients as well as by auxotrophic requirements.

However, in all studies the carbon source was glucose, which is highly preferred by S.

cerevisiae and special in many ways (Zaman et al, 2008). Thus, it is not clear how much

of the identified GRR is specific to growth on glucose (Zaman et al, 2009; Futcher, 2006)

as a sole carbon source and how much of the GRR is general to growth and independent of

the carbon source. In fact, Zaman et al (2009) have suggested that much of the observed

common growth rate response can be due to glucose. To explore whether the common

growth rate response is still going to be present in cultures grown on non–fermentable

carbon source, I grew S. cerevisiae continuous cultures on ethanol carbon source and

measured physiological parameters, gene expression, and metabolites.

I found that the growth rate response of a large number of genes (about 1500) remains

very similar on ethanol carbon source and I call this common growth rate response uni-

versal growth rate response. Genes with positive universal growth rate response include

ribosomal and translation genes. Genes with negative universal growth rate response

include autophagy, vacuolar and stress response genes. Remarkably, all genes having

universal growth rate response are expressed periodically in the yeast metabolic cycle

(YMC) (Slavov and Botstein, 2011; Slavov et al, 2011). Genes whose expression levels

increase with growth rate are expressed in YMC phase with high oxygen consumption

while genes whose expression levels decrease with growth rate are expressed in YMC

phase with low oxygen consumption. To understand better the relationship between the
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YMC and the growth rate response, I synchronized metabolically continuous cultures and

quantified the relationship between the growth rate and the periods of YMC phases. The

relative duration of the YMC phase with high oxygen consumption increases with growth

rate, which can account quantitatively for the observed universal growth rate response.

Furthermore, I measured a linear dependence between the periods of the YMC and the

cell cycle, which suggests a switch from YMC to fermentation at growth rates too high

for the YMC to ensure reductive period that is long enough for DNA replication.

In contrast to the universal growth rate response, the growth rate response of many

other genes is carbon source and/or limitation specific. Some of the carbon source specific

growth rate response genes are expected (such as the stronger induction of mitochon-

drial and ethanol utilization genes in ethanol carbon source compared to glucose) while

other carbon source specific growth rate response genes are more surprising, such as

genes related to generation of precursor metabolites and energy, microtubules and the

cell–cycle. To characterize the underlying regulatory mechanisms behind the observed

growth rate response, I identified transcription factors (TFs) likely to mediate the growth

rate response and inferred their activities in different nutrients and growth rates using

RCweb (Slavov, 2010). Based on the gene expression data, I inferred that some TFs

have carbon source dependent activities (GCN4, HAP4, FHL1, YAP5) and even more

TFs have growth rate dependent activities, including RAP1, GAT3, CBF1, MET4, INO4,

HAP4. Interestingly, for most TFs the change in activity is not reflected in the level

of the corresponding mRNA. In ethanol carbon source, I found very strong induction,

positive growth rate response and differential usage of isoenzymes in pathways (such as

gluconeogenesis, TCA, and ethanol utilization) whose metabolic fluxes are expected to

increase with growth rate and to be higher in ethanol compared to glucose carbon source.

These findings suggest that transcription likely plays a role in regulating those metabolic

pathways, but not in regulating the activities of TFs.
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To identify growth rate response differences between auxotrophs and prototrophs, I

grew his and lys auxotrophs limited on their auxotrophic requirements at different growth

rates (Slavov and Botstein, 2013). The gene expression data from these experiments in-

dicate significantly weaker induction of autophagy genes in slowly growing auxotrophic

cultures compared to prototrophic cultures growing at the same growth rate. From the

growth rate experiments with his and lys auxotrophs as well as from batch experiments

I discovered very wide distribution of cell sizes (3-5 fold difference in cell volumes)

in cultures of auxotrophs starving for their auxotrophic requirement. Both the failure

to induce autophagy and the poor control of cell–size are likely to contribute to the

lower viability of starving auxotrophs. Based on analysis used by Slavov and Dawson

(2009), I identified the genes whose combinatorial regulation is most different between

auxotrophic and prototrophic cultures. These genes are likely to mediate glucose wasting

by auxotrophs and I experimentally demonstrated that single deletions for of SFP1, CCC1

or CCP1 have highly significant effects on glucose wasting.
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Preface

Many studies have exploited chemostats and gene expression microarrays to characterize

the growth rate response in the buddying yeast (Saccharomyces cerevisiae) growing on

glucose carbon source (Hayes et al, 2002; Pir et al, 2006; Regenberg et al, 2006; Castrillo

et al, 2007; Brauer et al, 2008). These studies demonstrated a common growth rate

response (GRR) in continuous exponentially growing cultures, both aerobic and anaer-

obic and limited by different natural nutrients as well as by auxotrophic requirements.

However, in all cases the carbon source was glucose, which is highly preferred by S.

cerevisiae and special in many ways (Zaman et al, 2008). Thus, it is not clear how much

of the identified GRR is specific to growth on glucose (Zaman et al, 2009; Futcher, 2006)

as a sole carbon source and how much of the GRR is general to growth and independent of

the carbon source. In fact, Zaman et al (2009) have suggested that much of the observed

common growth rate response can be due to glucose. To explore whether the common

growth rate response is sitll going to be present in a culture grown on non–fermentable

carbon source, I grew S. cerevisiae continuous cultures on ethanol carbon source and

measured physiological parameters, gene expression, and metabolites. The experiments,

some of the challenges and the data are presented and discussed in chapter 1.

The statistical analysis of the data from these and the experiments by Brauer et al

(2008) is the subject of chapter 2. I discovered that the growth rate response of a large

number of genes (about 1500) is very similar across all limitations, ethanol and glucose

1



carbon source and I call this common growth rate response universal growth rate re-

sponse. In contrast, the growth rate response of many other genes is carbon source and/or

limitation specific. Some of the carbon source specific genes are expected (such as mi-

tochondrial genes for ethanol carbon source) while other carbon source source genes are

more surprising, such as genes related to generation of precursor metabolites and energy,

microtubles and cell–cycle. Once the genes with common and differential growth rate

responses are identified, one might ask what are the underlying regulatory mechanisms

behind the observed growth rate response. The analysis from the fourth section of chapter

2 is focused on using 2 very different methods for inferring the transcriptional regulation

underlying the growth rate response.

The comparison of the methods for identifying transcriptional regulators motivates

the need for a network inference algorithm. Such algorithm, RCweb, is derived, tested

and applied to the data in the fourth chapter. There I describe an approach to inferring

regulators that avoids inaccurate assumptions and arbitrary thresholds while preserving

high statistical power and inferring systematically not only the regulators, but also their

combinatorial interactions and activities. The use of this approach requires solving an

NP–hard problem for which the existing algorithms do not perform very well. I derive a

radically different algorithmRCweb that significantly outperforms (by several fold) even

the best competitors in accuracy and by orders of magnitude in computational efficiency

(Slavov, 2010). Then I apply RCweb to my data and to growth rate response data on

glucose carbon source from Brauer et al (2008).

Remarkably, all genes having universal growth rate response are expressed periodi-

cally in the yeast metabolic cycle (YMC) (Tu et al, 2005). Based on this observation,

experimental data on the YMC at different growth rates and recent work demonstrating

the cell autonomous nature of the YMC (Silverman et al, 2010), I developed a model that

explains quantitatively the observed growth rate response as a superposition of expression

2



levels of genes expressed during different phases of the YMC. The model requires that

the durations of YMC phases change with growth rate, which is confirmed experimentally.

Furthermore, I develop a general non–linear approach to using FISH data for studying the

connection between the cell–cycle, growth rate and the YMC.

The final chapter summarizes briefly differences in the growth rate response of pro-

totrophic cultures and auxotrophic (for his, lys, leu and ura) cultures. I identify a signifi-

cant difference in the extent of autophagy induction during slow growth which is one of

the main functional groups of genes with universal growth rate response. Furthermore,

I use analysis developed by Slavov and Dawson (2009) to identify the genes whose

combinatorial regulation is most different between auxotrophic and prototrophic cultures.

Based on this analysis, I identify a set of genes likely to mediate glucose wasting by

auxotrophs and experimentally demonstrate that deletions of those genes have highly

significant effects on glucose wasting.
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Chapter 1

Studying Growth Rate Experimentally

1.1 History & Background

As a doctoral student in the 1930s, Jacques Monod explored bacterial growth on different

sugars and described two distinct growth phases separated by a switch which he denoted

by the term “diauxie” meaning two growth phases. An important result of this work

was the phenomenological description of the growth rate as a function of the nutrient

concentration by a simple monotonically increasing function (rectangular hyperbola)

known to this date as Monod’s growth law (Monod, 1942, 1949). This result indicated

quantitatively that nutrient concentrations regulate the rate of microbial growth.

After Jacques Monod, prominent scientists that furthered understanding on bacterial

growth growth include Kjeldgaard and Maaløe. Maaløe and Kjeldgaard used the Monod’s

growth law to grow bacteria at different growth rates depending on the richness of the nu-

trient media and documented changes in cell–size, protein, DNA and RNA composition

that depend only of the growth rate and not on the particular media composition used for

achieving the growth rate (Kjeldgaard et al, 1958; Maaløe, 1979). Kjeldgaard et al (1958)
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interpreted their results to mean that protein production (ribosomes and translation) is

growth rate limiting.

More recent studies on growth rate have used the chemostat, a device designated by

Novick and Szilard (1950) (a contemporary of Ole Maaløe) to use the nutrient depen-

dence of growth rate (as discovered Jacques Monod) for growing exponential cultures

at any desired growth rate lower than the fastest growth rate that the microorganism can

sustain. Furthermore, modern studies have used DNA microarray technology developed

in the mid 1990 by Schena et al (1995); Lashkari et al (1997) for monitoring genome–

wide gene expression patterns associated with growth rate.

Modern studies using chemostats and gene expression microarrays to characterize the

growth rate of the buddying yeast (Saccharomyces cerevisiae) growing on glucose carbon

source include (Hayes et al, 2002; Pir et al, 2006; Regenberg et al, 2006; Castrillo et al,

2007; Brauer et al, 2008). These studies demonstrated a common growth rate response

(GRR) in continuous exponentially growing cultures, both aerobic and anaerobic and

limited by different natural nutrients as well as by auxotrophic requirements. However,

in all cases the carbon source was glucose which is highly preferred by S. cerevisiae and

special in many ways (Zaman et al, 2008). In fact, Zaman et al (2009) have suggested

that much of the observed common growth rate response can be due to glucose. Thus, it

is not clear how much of the identified GRR is specific to growth on glucose Zaman et al

(2009); Futcher (2006) as a sole carbon source and how much of the GRR is general to

growth and independent of the carbon source. Many other fundamental questions about

the origin, regulation and significance of the growth rate response remain open. What

are the nutrient specific differences in the GRR and how significant are they? What is

the origin of the growth rate response and how is it mediated in terms of cell–signaling

cascades? To explore these question I grew S. cerevisiae continuous cultures on ethanol

carbon source and measured physiological parameters, gene expression, and metabolites.
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The next sections of this chapter describe the apparatus used for controlling the growth

rate (a chemostat) and the following sections detail the experiments, the materials and

methods used in the experiments and briefly describe the data.
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1.2 Chemostat

A population of microorganisms growing in the wild (or in a test tube) is likely to be

composed of cells growing at different growth rates and changing their growth rate in

time as nutrients are being depleted or other physical parameters (such as temperature)

change in time. Studying the physiological responses to changes in growth rate is thus

greatly confounded by many factors that might be unobserved and changing in time. The

chemostat (Novick and Szilard, 1950) is a convenient experimental apparatus allowing

one to avoid such complications. In its essential design, a chemostat is a fermenter for

continuous cultures with a constant influx of fresh nutrient media and equal efflux of

reaction media containing cells, residual nutrients and secreted metabolites, Fig.1.1.

Figure 1.1: Schematic diagram of a chemostat (Novick and Szilard, 1950).

The dynamics of a chemostat cultures can be modeled by a very simple ordinary

differential equation (1.1) with a single dependent variable N denoting the number of
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cells and the time t being the independent variable.

dN

dt
= µN −DN (1.1)

Equation (1.1) describes the change in the number of cells N as a function of the growth

rate of the population µ and the dilution data D. At steady–state dN/dt = 0 and

thus the growth rate equals the dilution rate, µ = D. This is an important result and

equation (1.1) is the simplest way to derive it. However, equation (1.1) is rather limited in

describing dynamics because the growth rate itself is a function of the growth conditions

and the nutrient concentrations which are not included in equation (1.1). Equation (1.1)

cannot even predict how the steady–state biomass density depends on the concentration

of nutrients in the media.

These limitation can be overcome by only slightly more complicated model with

two first–order ordinary differential equations (1.2–1.3) assuming that the growth rate

dependence on the nutrient concentration can be described by a Monod equation (Monod,

1942, 1949).

dS

dt
= D(So − S)− 1

γ
Nµmax

S

S +K
(1.2)

dN

dt
= Nµmax

S

S +K
−DN (1.3)

The 2 dependent variables are the number of cells (N) and the amount of nutrient sub-

strate (S) in the fermenter vessel. For simplicity and enhanced experimental control,

it is convenient to provide all nutrients except for one in excess so that the growth of

the culture depends only on the nutrient that is limited. Thus in Eq. (1.2–1.3), S is the

amount of limiting nutrient. It is often more convenient to work with the concentration

of the limiting nutrient and the biomass density (number of cells or cell volume per unit

volume) rather than the absolute amounts. Making this change in Eq. (1.2–1.3) requires

a simple scaler scaling by the volume and changes only the unites of N and S.
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In the model above Eq. (1.2–1.3), the dynamics ofN and S depend on four parameters:

• So – concentration of the limiting nutrient in the feed (fresh media)

• µmax – The highest growth rate that the organisms can archive if all nutrients are

abundant, e.g. above saturating nutrient concentrations.

• γ – A parameter quantifying the efficiency of converting the limiting nutrient into

biomass. For example, grams of biomass generated from a gram of glucose.

• D – Dilution rate. The rate at which new media drips into the chemostat. By

design, D is also the rate at which reaction media leaves the fermenter vessel.

At steady–state dN/dt = 0. Setting the derivative equal to zero in Eq. (1.3), results in:

µ = µmax
S

S +K
= D (1.4)

Thus, at steady–state the growth rate of the chemostat culture (µ) equals the dilution rate.

Since the dilution rate can be set conveniently by the experimenter, this allows growing

a culture at any desired growth rate that does not exceed µmax. Throughout this thesis,

I will used growth rate and dilution rate interchangeably for cultures at steady–state.

Solving equations (1.2–1.3) for steady–state enables expressing the steady–state biomass

as a function of the concentration of the limiting nutrient in the media which will be used

in the following sections.

1.3 Experimental Design

One of the crucial factors in measuring the growth rate response accurately is using yeast

strains and growth conditions that allow for a wide dynamical range of growth rates.

Very slow growth rates are harder to establish and maintain accurately in a chemostat

because small leaks of the pumps or obstructions of the tubing become significant relative
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to the set dilution rate. Furthermore, the physiological state of the cells approaches

asymptotically G1/G0 arrest (quiescence) and measured changes become comparable to

inevitable fluctuations associated with experimental measurements. As a result, at very

slow growth rate the signal to noise ratio (SNR) decreases to rather unfavorable level.

Thus to generate high quality data, it is highly desirable to extend the dynamical range of

the growth rates by using strains and conditions allowing short doubling times. Initially,

I started the experiments with WT CEN.PK. Its maximal growth rate on ethanol is rather

slow and this not only fundamentally limited the dynamical range of my experiments

but also resulted in rather low biomass densities even at µ = 0.08h−1. To overcome

this problem, we looked for a strain that can grow faster on ethanol. Such a strain was

isolated by Thomas Fox for its ability to grow well on ethanol (Fig.1.2) and cataloged as

DBY11369 in the strain collection of David Botstein. I used DBY11369 for all growth rate

Figure 1.2: DBY11369 was grown in 100mM ethanol media as a batch culture
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experiments on ethanol carbon source described in this thesis. In excess of all nutrients

(exponential phase in a batch culture) and at 30oC, the highest growth rate I measured

with DBY11369 is µ = 0.15h−1 (Fig.1.2) which is higher than the growth rate I measured

with any of the other strains I grew including WT CEN.PK and WT S288C, HAP1+. In

fact, after using DBY11369 for the growth rate experiments on ethanol carbon source, I

attempted growing WT CEN.PK in the conditions that worked great for DBY11369. Even

at µ = 0.08h−1, the biomass density became so low that I had to lower the dilution rate

to prevent the culture from washing out, once again demonstrating that my starting strain

(WT CEN.PK) was not optimal for growth rate studies on ethanol carbon source. S288C

with HAP1+ has growth rate much closer to the growth rate of DBY11369 and could have

been a viable alternative.

A second important consideration in my experimental design was finding nutrient

concentrations that are both limiting and result in optimal biomass densities at steady–

state. As already mentioned, limiting the growth of the culture on a single nutrient

simplifies the control of the experiment and the analysis of the data. In particular, solving

Eq. (1.2–1.3) at steady–state (dS/dt = dN/dt = 0), indicates that the steady–state

biomass depends linearly on S0, the concentration of the limiting nutrient in the fresh

media. To establish optimal concentrations for limiting nutrients, I grew DBY11369 in

batch in chemostat media with varying amounts of the limiting nutrient. Fig.1.3 shows

the the final biomass (the biomass of the culture after the growth stops and the biomass

density reaches an asymptotic value) as a function of the ethanol concentration: To

quantify the biomass, I used OD600, the absorbance (optical density) of the culture for

light with wavelength λ = 600nm. Since I scanned a wide dynamical range of limiting

nutrient concentrations, the biomass also varied widely, reaching high levels at which

the optical density is not linearly proportional to the biomass density. To avoid such

aberrations, I did serial dilutions ensuring that for all datapoints the measured optical
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Figure 1.3: Dependence of the final biomass of DBY11369 grown as a batch culture in chemostat media on
the initial concentration of ethanol.

density is close to the optimum of the spectrophotometer. Fig.1.3 shows that the final

biomass depends linearly on the concentration of ethanol over a wide dynamical range.

For the chemostat experiments, I chose a concentration of 30mM ethanol since it gave

optimal biomass and was well within the linear range. The fact that 30mM ethanol is

limiting for growth in batch implies that it is likely to be liming for steady–state growth

in chemostats but does not guarantee that. Therefore, I experimentally tested whether

30nm ethanol is indeed limiting at steady–state. I grew DBY11369 at µ = 0.10h−1 to

steady–state feeding from media containing 30mM ethanol and using a Coulter counter

measured a cell density of 1.5 × 107 cells/mL. Then I switched to media with identical

composition except for two times higher ethanol concentration (60mM ). When the

culture reached steady–state (again at µ = 0.10h−1), I measured culture density of 3×107

cells/mL indicating that 30mM ethanol is indeed limiting and in the linear response

regime not only in batch but also at steady–state.
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I used the same type of experiments to establish optimal limiting concentrations for

PO3−
4 and NH+

4 , Fig.1.4. The optimal concentrations chosen for the chemostat ex-

periments and verified to be limiting at steady–state are [KH2PO4] = 20mg/L and

[(NH4)2SO4] = 100mg/L.

The determined amounts for the limiting nutrients were mixed with minimal defined

(MD) media, metals, and vitamins. The only carbon source in all cases was ethanol

30mM for the ethanol limitation and (100mM ) for the nitrogen and phosphorus limita-

tions. All media was added via sterile filtration to autoclaved chemostats as described

previously (Saldanha et al, 2004; Brauer et al, 2005, 2008).

Chemostats were established in 500mL fermenter vessels (Sixfors; Infors AG, Bottmin-

gen, Switzerland) containing 250mL of culture volume, stirred at 400rpm, and aerated

with humidified and filtered air. Chemostat cultures were inoculated, monitored and

grown to steady state as described previously (Brauer et al, 2005). All cultures were

monitored for changes in cell density and dissolved oxygen and grown until these values

remained steady for at least 48h.
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Figure 1.4: Dependence of the final biomass of DBY11369 grown as a batch culture in chemostat media on
the initial concentration of phosphate (PO3−

4 ) and on the initial concentration of ammonium, (NH+
4 )
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1.4 Physiological Growth Rate Response

Growing microbial cultures at steady–state in chemostats not only allows for precise con-

trol of many experimental parameters but also for precise measurements of physiological

parameters that can be highly informative. This section is devoted to reporting the results

of such measurements and discussing their biological significance.

1.4.1 Residual Ethanol

At steady–state, (Fig.1.5) the concentration of residual ethanol in the fermenter vessel

for the culture limited on ethanol follows the trend expected from Eq.(1.2–1.3). While
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Figure 1.5: Residual ethanol concentration as a function of the growth rate across nutrient limitations of
cultures growing on ethanol carbon source.

Eq.(1.2–1.3) are insufficient to describe the residual concentration of ethanol for the other

limitations quantitatively, the qualitative trend can be predicated intuitively. As cells

grow slower (low dilution rates), they spend more time in the reaction vessels and the
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flux of media is slower. Both of these factors suggest that the concentration of residual

ethanol should be inversely correlated to the growth rate of the cultures which is in fact

what is experimentally observed, Fig.1.5. The specific consumption of ethanol (ethanol

consumed/steady–state biomass) is lower for the ethanol limited culture suggesting that

cultures not limited on ethanol might metabolize some fraction of the ethanol to acetate,

possibly to generate reducing NADPH required for biosynthetic processes. This is con-

sistent with acetate detected in the cultures limited on NH+
4 and PO3−

4 but not in the

cultures limited on ethanol. Problems with quantifying acetate limit the ability to make

this argument more quantitative.
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1.4.2 Bud Index

One one the advantages of budding yeast is that the cell morphology is indicative of the

cell–cycle phase, (Hartwell, 1974; Hartwell et al, 1974). In particular, cells in G0/G1 are

not budded while cells in S/G2/M are budded. Buds, daughter cells, start emerging during

S phase and grow until they separate as independent cells at the end of M. The fraction of

budded cells (Fig.1.6) in steady–state cultures was quantified by counting a few hundred

budded and non–budded cells in sonicated samples from steady–state chemostat cultures.

The fraction of budded cells shows linear dependence (within experimental error) with
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Figure 1.6: Fraction of budded cells as a function of the growth rate across nutrient limitation of cultures
using ethanol carbon source.

respect to the growth rate. The budded fractions are not only qualitatively but also quan-

titatively the same as the ones observed on glucose carbon source for the corresponding

growth rates (Brauer et al, 2008). These data indicate that the duration of S/G2/M phases

of the cell–cycle does not change with growth rate and the duration of G0/G1 is inversely

proportional to the growth rate, (Hartwell, 1974; Brauer et al, 2008).
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1.4.3 Biomass Density and Cell Size

The biomass density (Fig.1.7) also follows the trend expected from Eq.(1.2–1.3). The
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Figure 1.7: Cell density as a function of the growth rate across nutrient limitations of cultures using ethanol
carbon source.

standard deviations (plotted as error bars) computed from 3 measurements spaced by 48

hours show that the biomass density of the cultures did not change significantly, and

therefore is fully consistent with the cultures being at steady–state.

The cell–size distributions in all limitations (Fig.1.8) show very good reproducibility

as demonstrated by the close overlap of the red traces corresponding to individual mea-

surements. Since in all cases the samples analyzed on the Coulter counter where diluted

1/1000, the highest growth rates having the lowest biomass (Fig.1.7) exhibit higher noise

levels. This problem can be easily overcome by using a lower dilution ratio for the highest

growth rate cultures, such as 1/200. Varying the dilution level to achieve optimal biomass

densities was applied successfully in later experiments and these were the pioneering

experiments that indicated the need to adjust the dilution ratio. The cell–size distributions

in all limitations Fig.1.8 show a growth rate trend of increased variance with the growth

18



2 2.5 3 3.5 4 4.5 5 5.5 6
0

100

200

300

400

500

600

700

800

Cell Diameter, µm

N
u
m
b
er

o
f
C
el
ls

Ethanol Limitation at Growth Rate 0.05h−1

2 2.5 3 3.5 4 4.5 5 5.5 6
0

100

200

300

400

500

600

Cell Diameter, µm

N
u
m
b
er

o
f
C
el
ls

Ethanol Limitation at Growth Rate 0.10h−1

2 2.5 3 3.5 4 4.5 5 5.5 6
0

10

20

30

40

50

60

70

80

90

100

Cell Diameter, µm

N
u
m
b
er

o
f
C
el
ls

Ethanol Limitation at Growth Rate 0.14h−1

2 2.5 3 3.5 4 4.5 5 5.5 6
0

200

400

600

800

1000

1200

1400

Cell Diameter, µm

N
u
m
b
er

o
f
C
el
ls

Nitrogen Limitation at Growth Rate 0.05h−1

2 2.5 3 3.5 4 4.5 5 5.5 6
0

100

200

300

400

500

600

Cell Diameter, µm

N
u
m
b
er

o
f
C
el
ls

Nitrogen Limitation at Growth Rate 0.10h−1

2 2.5 3 3.5 4 4.5 5 5.5 6
0

50

100

150

200

250

Cell Diameter, µm

N
u
m
b
er

o
f
C
el
ls

Nitrogen Limitation at Growth Rate 0.14h−1

2 2.5 3 3.5 4 4.5 5 5.5 6
0

200

400

600

800

1000

1200

Cell Diameter, µm

N
u
m
b
er

o
f
C
el
ls

Phosphate Limitation at Growth Rate 0.05h−1

2 2.5 3 3.5 4 4.5 5 5.5 6
0

50

100

150

200

250

300

Cell Diameter, µm

N
u
m
b
er

o
f
C
el
ls

Phosphate Limitation at Growth Rate 0.10h−1

2 2.5 3 3.5 4 4.5 5 5.5 6
0

50

100

150

200

250

Cell Diameter, µm

N
u
m
b
er

o
f
C
el
ls

Phosphate Limitation at Growth Rate 0.14h−1

Figure 1.8: Distributions of cell sizes as a function of the growth rate across nutrient limitations of cultures
using ethanol carbon source. The red traces are individual measurements and the black curves are the
average of the individual measurements.

rate due to increasing fraction of cells with larger diameters, Fig.1.8. Furthermore, some

distributions, such as the cell–sizes of the ethanol limitation at µ = 0.10h−1 appear to be

bimodal. The most likely reason for this trend is the increased fraction of budded cells as

indicated by Fig.1.6. Based on this argument, I developed and fit a model explaining the

observed cell–size distributions as a mixture of the two populations (budded and non–

budded cells) with different cell–size distributions, Fig.1.9. The simplest model that
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Figure 1.9: The empirical distributions (black) of cell sizes are decomposed into a mixture of two
distributions, non-budded cells (green) and budded cells (magenta). The cell–size distribution predicated
by the model (a superposition of the budded and non-budded distributions) is plotted as dotted red curves.

was first fit to the data used Gaussian distributions but it gave rather large systematic

deviations from the data. The reason for those deviations is the significant asymmetry

in the distributions, Fig.1.8. Thus generalized Gaussian distributions were used resulting

in a much better fit to the data without significant systematic deviations, Fig.1.9. Why

might the cell–size distributions follow generalized rather than simple Gaussian distri-

butions? A very simple and likely explanation is the non–linearity in the interactions of
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the factors that determine cell size in yeast. A Gaussian distribution is expected based

on the Central Limit Theorem which is derived and proved based on the assumption of

linear superposition of many independent factors. If the cumulative effect of the factors

determining cell–size is not based on simple summation of their individual effects and/or

those factors are not independent (both of which are very likely) the expected distribution

is more likely to be generalized Gaussian as the data indicate, Fig.1.8.

The model fits depicted on Fig.1.9 can be used to infer the fraction of budded cells.

This model predication is compared (Fig.1.10) to the experimentally measured budded

fraction, Fig.1.6. While the model prediction and the measurement show strong correla-

0.1 0.15 0.2 0.25 0.3 0.35
0.1

0.15

0.2

0.25

Budded Fraction, Manual

B
u

d
d

ed
 F

ra
ct

io
n

, C
o

u
lt

er
 C

o
u

n
te

r

 

 

Data
Linear Fit

Figure 1.10: Bud Index Comparison. The fraction of budded cells predicted by the model of distribution
sizes is plotted versus the fraction of budded cells counted experimentally, see Fig.1.6
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tion, the deviation at the highest growth rates are significant which is most likely due to

the noisier data because of the lowest biomass density at the highest growth rates, Fig.1.7.

More significantly, the intercept of the linear fit does not go through (0, 0) which most

likely is caused by different shapes of the distributions of budded and non–budded cells.

Indeed, adding a fudge parameter for different shapes moves the intercept toward zero

and further improves the fit to the data.
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1.5 Transcriptional Growth Rate Response

To measure RNA levels (Fig.1.11), I sampled 10-30ml of steady–state culture from each

limitation and growth rate and vacuum filtered the cells followed by immediate refrig-

eration in liquid nitrogen and then in a freezer at −80oC. RNA for microarray analysis

was extracted by the acid–phenol method. RNA was amplified and labeled using the

Agilent low RNA input fluorescent linear amplification kit (P/N 5184-3523; Agilent

Technologies, Palo Alto, CA). This method involves initial synthesis of cDNA by using

a poly(T) primer attached to a T7 promoter. Labeled cRNA is subsequently synthesized

using T7 RNA polymerase and either Cy3 or Cy5 UTP. Each Cy5-labeled experimental

cRNA sample was mixed with the Cy3-labeled reference cRNA and hybridized for 17 h

at 60oC to custom Agilent Yeast oligo microarrays having 8 microarrays per glass slide.

Microarrays were washed, scanned with an Agilent DNA microarray scanner (Agilent

Technologies), and the resulting TIF files processed using Agilent Feature Extraction

Software version 7.5. Resulting microarray intensity data were submitted to the PUMA

Database for archiving. When data are clustered hierarchically, the similarity metric

(non–centered correlations) is computed using all data shown in the plot unless otherwise

specified. For implementing hierarchical clustering I used either the heuristic algorithm

implemented by the PUMA Database http://puma.princeton.edu/or solved

the combinatorial permutation problem of hierarchical to optimal solution using traveling

salesman algorithm, see appendix 5.1.

Initially, the reference used for all experiments was from a glucose (0.8g/L) limited

culture growing at µ = 0.025h−1, Fig.1.11. To compare the growth rate data from ethanol

carbon source to the growth rate data from glucose carbon source, I also hybridized

4 of my samples from ethanol carbon source with the reference used by Brauer et al

(2008), glucose (0.8g/L) limited culture growing at µ = 0.25h−1. From each sample,
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I compute a gene specific offset indicating how much the expression level of each gene

has to be shifted for renormalizing my expression data to the reference used by Brauer

et al (2008), Fig.1.12. The correlation between offsets computed from the 4 samples

is excellent, (Fig.1.12) indicating good reproducibility of the experiments. The median

offset (from the four samples) was used for converting the expression data to the Brauer

et al (2008) reference. The converted data is displayed together with the data from growth

rate experiments on glucose carbon source, Fig.1.13:
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Figure 1.11: A clustergram of the gene expression data from continuous cultures on ethanol. The first
column (1) corresponds to controls, second column (2) to ethanol limitation 3 replicas per growth rate
ordered from slowest to fastest growth µ = {0.05, 0.10, 0.14}h−1, third column (3) to nitrogen limitation
2 replicas per growth rate ordered from slowest to fastest growth µ = {0.05, 0.10, 0.14}h−1, fourth
column (4) to phosphorus limitation 1 replica per growth rate ordered from slowest to fastest growth
µ = {0.05, 0.10, 0.14}h−1. The similarity metric (non–centered correlations) is computed using all data
shown in the clustergram.
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Figure 1.12: Correlation between offsets for reference switching computed from the 4 samples from ethanol
carbon source.
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Figure 1.13: A clustergram of the gene expression data from continuous cultures on ethanol (left set of
columns) and glucose (right set of columns). Each set of columns (carbon source) contain 3 limitations
(carbon, nitrogen, phosphorus) and each limitation has 3 growth rates ordered from slowest to fastest
growth µ = {0.05, 0.10, 0.14}h−1, for ethanol carbon source and µ = {0.05, 0.10, 0.15}h−1 for glucose
carbon source. The similarity metric (non–centered correlations) is computed using all data shown in the
clustergram.
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1.6 Metabolic Growth Rate Response

I used the Vacuum Filtering Method (Boer et al, 2008). Between 13 and 30 milliliters of

culture (depending on the biomass density) was rapidly sampled from the chemostat and

vacuum filtered over a 0.45µm pore size, 25mm nylon filter (Millipore), and the filter was

immediately quenched in 0.6ml of 20oC extraction solvent (acetonitrile:methanol:water,

40 : 40 : 20). After 15 min at 20oC, I mixed the cell material with the extraction solvent,

washed the filter with an additional 0.1ml of extraction solvent, centrifuged the resulting

suspension at 4oC, and set aside the supernatant. The pellet was extracted again with

0.1ml of extraction solvent for 15min at 4oC, the suspension was again centrifuged, and

the supernatants were pooled (total extraction volume, 0.8ml).

1.6.1 C-MS/MS Analysis

Chris Crutchfield input the cell extracts that I prepared to liquid chromatography-electrospray

ionization-triple quadrupole mass spectrometry in multiple reaction monitoring (MRM)

mode. Positive ionization mode analysis was on a Quantum Ultra triple quadrupole

mass spectrometer (Thermo Electron, San Jose, CA), coupled to hydrophilic interaction

chromatography on an aminopropyl stationary phase. Negative ionization mode analysis

was on a Finnigan TSQ Quantum DiscoveryMax triple quadrupole mass spectrometer

(Thermo Electron) coupled to tributylamine ion-pairing reversed phase chromatography

on a C18 stationary phase. Autosampler temperature was 4oC and injection volume was

10µl.
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1.6.2 Normalization

To convert raw LC-MS/MS ion counts to relative cellular concentration data, ion counts

were first normalized by the total cell volume extracted and the volume of the extraction

solvent. Normalized ion counts were then converted to relative concentrations by dividing

the value for the experimental samples by the corresponding value from the phosphate

limited reference chemostat cultures µ = 0.05h−1 used by Boer et al (2010).
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Figure 1.14: Reproducibility in the metabolite measurements

29



 
e
1
 

 
e
2
 

 
e
3
 

 
 
 

 
n
1
 

 
n
2
 

 
n
3
 

 
 
 

 
p
1
 

 
p
2
 

 
p
3
 

 4-Methylthiazoleethanol 
 ADP-nega 
 4-aminobutyrate 
 deoxyadenosine  thiamine 
 aspartate 
 Kynurenic acid 
 phenylpyruvate 
 hexose-phosphate 
 lysine 
 ornithine 
 citrulline 
 dihydroorotate 
 FAD 
 L-arginino-succinate 
 glutamate 
 NAD+_posi 
 S-methyl-5’-thioadenosine  leucine/isoleucine 
 proline 
 alanine 
 cystathionine 
 asparagine 
 Indole-3-carboxylic acid 
 Xanthurenic acid 
 serine 
 threonine 
 orotate 
 N-carbamoyl-L-aspartate-nega 
 Kynurenine 
 tyrosine 
 phenylalanine 
 arginine 
 histidine 
 tryptophan 
 valine 
 S-adenosyl-L-methionine 
 riboflavin 
 cytidine 
 glutathione-nega 
 guanosine 
 quinolinate 
 shikimate-3-phosphate 
 choline 
 Nicotinamide ribotide 
 pyridoxine 
 Saccharopine_neg 
 NADP+_posi 
 glycerate 
 2-Hydroxy-2-methylbutanedioic acid 
 trehalose/sucrose 
 acetyl-CoA-posi 
 succinate 
 N-Acetyl-L-alanine 
 glutathione  
 2,3-dihydroxybenzoic acid 
 adenosine 
 glutamine 
 sn-glycerol-3-phosphate 
 Glu-Cys_pos 
 Glu-Cys_neg 
 Pyridoxamine 
 Acetyllysine 
 citrate/isocitrate 
 citrate   
 oxaloacetate 
 2,3-Diphosphoglyceric acid 
 L-2-Aminoadipate 
 NADH 
 Saccharopine_pos 
 dihydroxy-acetone-phosphate 
 methionine 
 O-Acetyl-Homoserine 
 Glycerophosphocholine 
 nicotinate 
 fumarate 
 3-phosphoglycerate 
 fructose-1,6-bisphosphate 
 a-ketoglutarate 
 pyruvate 
 glutathione disulfide-posi 
 D-glyceraldehdye-3-phosphate 
 UDP-nega 
 Fructose-2,6-bisphosphate 
 histidinol 
 ATP-nega 
 Thiamine pyrophosphate 
 2-Isopropylmalic acid 
 UTP-nega 
 aconitate 
 isocitrate  
 Atrolactic acid 
 Phenyllactic acid 
 1-Methyladenosine 
 phosphoenolpyruvate 
 p-hydroxybenzoate 
 malate 

Figure 1.15: Metabolites Clustergram. Each column corresponds to a nutrient limitation. From left to
right: ethanol, ammonium and phosphate. Each limitation has 3 growth rates (µ = {0.05, 0.10, 0.14}h−1)
in increasing order. The similarity metric (non–centered correlations) is computed using all data shown in
the clustergram.
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Chapter 2

Analysis

2.1 Introduction

The most basic question to ask from the gene expression and the metabolite datasets is

which genes and metabolites differ significantly (in a formal statistical sense) between

different nutrient limitations and carbon sources. Such differences may be a different

trend (increasing or decreasing levels of mRNAs/metabolites as a function of the growth

rate), different mean levels or both. This kind of formal analysis aimed toward identifying

a universal growth rate response will be the focus of the second section of this chapter. To

facilitate understanding of the identified sets of genes, I use a standard and widely–used

approach to finding gene ontology (GO) terms that are significantly overrepresented in

the sets of growth rate response genes. To find overrepresented GO terms, I employ the

CIL implementation of GO Term Finder (Boyle et al, 2004).

While the GO terms finder is a useful tool for identifying functional groups of genes, it

has a number of drawbacks including hard thresholding, data discretization (binarization
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and the associated loss of information) and decreased statistical power for GO terms with

a small number of genes. These drawbacks are discussed briefly in the third section and

were greatly mitigated by applying non–parametric statistical analysis for identifying sets

of genes with statistically significant growth rate response specific to sets of nutrient lim-

itations or to carbon sources. This analysis makes use of GO terms and prior knowledge

of biological networks and pathways.

The fourth section is devoted to analyzing transcriptional changes in well–characterized

metabolic and regulatory pathways. Our understanding of the many biochemical reac-

tions involved in nutrient catabolism makes robust predictions about the reactions whose

metabolic flux should change significantly and it is interesting to explore the isoenzymes

whose levels change significantly and are thus likely to mediate the expected changes in

metabolic fluxes.

Once the genes with common and differential growth rate responses are identified one

might ask what are the underlying regulatory mechanisms behind the observed growth

rate response. The analysis from the fourth section is limited only to well known metabolic

and signaling pathways. Ideally, one would like to make this kind of analysis more

quantitative and extend it to all signaling networks transducing the signal from sensing

nutrient levels through biochemical pathways to systems–level physiological responses

such as growth rate. The existing technologies and the lack of data about many of

the intermediate levels fundamentally limit comprehensive inference. The data I have

collected allow me to infer regulatory interactions primarily at the level of transcription

and mRNA degradation. This is the subject of the fifth section. Different methods

are applied and the results compared. The comparison and the emerging shortcomings

motivate the need for a network inference algorithm. Such an algorithm, RCweb, is

derived, tested and applied to the data in the next chapter.
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2.2 Identifying Universal Growth Rate Response

2.2.1 Slopes/Exponents

A useful way to analyze the growth rate data is to fit a model that captures the growth rate

response trends. Given the limited number of datapoints per gene, only simple models

can be used without over–fitting the data. The explicit form of the model that should

describe the data is hard to derive based on first principles. Among the simplest models

is a linear model with two parameters per gene, one parameter for the mean nutrient

specific level and one in which the mRNA concentration depends linearly on the growth

rate, mRNAi = aiµ + bi. Based on sigmoidal (or as a sub case Michaelis Menten)

signal transduction transfer functions and using some approximations, one may expect

a power–law dependence (also needing 2 parameters per gene) between the growth rate

(µ) and the change in mRNA levels, mRNAi = biµ
ai . Brauer et al (2008) and Airoldi

et al (2009) used a model with 2 parameters per gene with exponential dependence

between the mRNA level and the growth rate, mRNAi = bie
aiµ. In semi–log space,

such exponential model “appears” linear log(mRNAi) = log(bi) + aiµ. Similarly, in

log–log space the power–law model becomes linear, log(mRNAi) = log(bi) + log(µ)ai.

An unbiased way to assess the performance of those models (having the same level of

complexity) is to use a common statistical criterion R2, which is the fraction of variance

in the data explained by the model over the total variance in the data, Fig.2.1. Based on

goodness of fit as quantified by R2, the power–law model captures the largest fraction

of the variance for all limitations (Fig.2.1A) and especially on some limitations, such as

uracil Fig.2.1B. Since Brauer et al (2008) used the exponential model and my use of a

model is purely phenomenological (to quantify trends in the transcriptional growth rate

response), in the rest of this thesis I will use only the exponential model for consistency.
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Figure 2.1: Explained fraction of the variance in the gene expression data on glucose carbon source by a lin-
ear, power–law and an exponential model. All 6 growth rates µ = {0.05, 0.10, 0.15, 0.20, 0.25, 0.30}h−1

are used by all models.

In semi–log space, the exponents in the model “appear” to be slopes, and thus I will use

the term slopes in keeping with previous work (Brauer et al, 2008).

Computing Slopes and Quantifying Significance

All slopes throughout this thesis are computed based on regression models in the `2 sense,

minimizing the sum of squared residuals. The regression models use design matrices X in

which each row corresponds to an experiment. For comparison to previous work (Brauer

2007), I start by fitting models that incorporate a nutrient specific constant reflecting

the mean expression of each gene for each nutrient. In that case, the first column of X

corresponds (contains) the growth rates, e.g. Xi1 = µi, where µi is the growth rate in the

ith experiment. The second column corresponds to the first limitation and has ones in the

rows corresponding to experiments of the first limitation and zeros in all other rows. The

third column corresponds to the second limitation and so on. Then I regress the matrix

against the data Y ∈ RM×N , where rows correspond to M conditions and columns to

N genes. Then the parameters (slopes and limitation specific constants) in matrix Ĉ

can be found as the maximum likelihood estimate assuming Gaussian noise in `2 sense,

34



Ĉ = (XTX)−1XTY. The actual numerical implementation uses QR decomposition

because of its better stability and numerical properties. As a measure of goodness of fit,

I use the fraction of variance explained by the model which for the jth gene is quantified

by R2
j :

R2
j = 1−

∑
i∈α(yij − fij)2∑
i∈α(yij − ȳj)2

(2.1)

In (2.1), yj is a vector of expression levels of the jth gene (jth column in Y), ȳj is its

mean expression level, i is index enumerating the set of conditions α used in the model

and fij is the model predication for the ith condition and jth gene.

Based on analysis described in the appendix 5.2, the slopes computed from the 6

growth rates µ = {0.05, 0.10, 0.15, 0.20, 0.25, 0.30}h−1 on glucose carbon source are

more similar to the slopes computed on ethanol carbon source. Therefore, all 6 growth

will be used for computing the glucose slopes and analysis in this thesis.

2.2.2 Universal Growth Rate Response

To understand some aspects of the growth rate response, one has to look at growth rate

response specific to nutrient limitations and to subgroups of limitations. Such specific

growth rate responses are discussed in the following subsections. Here, I first consider

the growth rate response that is common to all limitations on both glucose and ethanol

carbon source. To identify such universal growth rate response, I fit a regression model

(2.2.1) explaining the expression levels of each gene with a single gene specific slope.

For comparison to previous work (Brauer et al, 2008), I also fit models that incorporate

nutrient specific constants reflecting the mean expression of each gene for each nutrient.

The goodness of fit is quantified by R2, (2.1). Then, the data for each gene is permuted

106 times and the R2 for each permutation is computed. Based on these computations,
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the significance of the growth rate response for each gene is quantified by a p value which

equals the fraction of R2 values in the permuted data that are larger than the R2 for the

non–permuted data, Fig.2.2. It might be tempting to interpret the high R2 and low p–
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Figure 2.2: Rank ordered p values and the corresponding R2 from a model accounting for both the nutrient
mean effect (by a nutrient specific constant) and for the growth rate response by a gene specific slope,
(Brauer et al, 2008). (A) Results for carbon, nitrogen and phosphate limitations on glucose and ethanol
carbon source and (B) Results for all limitations on glucose and ethanol carbon source.

vals (Fig.2.2) as evidence for universal growth rate response shared by half the genome,

Fig.2.2A or even 3/4 of the genome, Fig.2.2B. Yet this conclusion overlooks the fact that

the model includes both the growth rate and the effect of the nutrient limitation on the

mean level of gene expression. Therefore, a gene whose mean expression level differs

significantly among limitations and carbon sources will fit the model well (high R2) even

if its slopes on individual limitations differ slightly; As long as most of the variance in

the expression of such a gene comes from different limitation–specific mean levels, its

R2 will always be high independent of its slope on different limitations. The significance

of the fit for such a gene is further bolstered by the large amount of high quality data

coming from many limitations, Fig.2.2B. Prime examples for genes in this group are

genes involved in ethanol utilization and gluconeogensis as discussed in section 2.4. In

particular, genes such as the cytoplasmic malate dehydrogenase MDH2 that have large

positive slopes in all ethanol carbon source limitations and large negative slopes in all

glucose carbon source limitations fit the models with relatively large negative slope and

high R2. The reason for the high R2 is that most of the variance in the data for MDH2
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comes from the much higher level of expression of MDH2 on ethanol carbon source

and the model explains this variance well because of the nutrient specific constant. The

net negative slope reflects the fact that there are more glucose carbon source conditions

and a net negative slope minimizes the sum of squared residues. At a more conceptual

level, the fact that adding more limitations in Fig.2.2B compared to Fig.2.2A increases

the number of genes with very significant fits indicates that the model cannot be used

for identifying a common growth rate response. The number of genes with a common

growth rate response can only decrease (but not increase) by adding more conditions. The

increase in the number of genes for which the model explains a significant fraction of the

variance reflects the fact that the larger the set of profiled conditions, the more likely that

a gene will be expressed differentially for at least one of the conditions.
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Figure 2.3: Rank ordered p values and the corresponding R2 for all growth rate response gene expression
data using a model accounting for the growth rate response only by a gene specific slope and a constant. The
p values are computed from 106 bootstrap resamplings of the data. (A) Goodness of Fit (B) Distribution of
Slopes.

Because of the nutrient mean effect, the results from the growth rate model used by

Airoldi et al (2009) are hard to interpret as a common growth rate response especially

in the case of conditions (such as different carbon sources) associated with substantial

differences in condition specific mean expression levels. One approach to finding the

genes with common growth rate response among the genes that fit the model is to use

nested models with multiple slopes and assess the improvement in the goodness of fit.

A much simpler approach, which I am using, is to eliminate the contribution coming
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Figure 2.4: Distribution of slopes according to the significance of the explained variance by a model
accounting for the growth rate response only by a gene specific slope and a constant and fit too all growth
rate response data. (A) The bar graph corresponds to the distributions of slopes of all genes (B) The bar
graph corresponds to the distributions of slopes of genes that do not fit the model with high significance

from explaining the nutrient dependent mean level of expression. This can be done by

replacing R2 with an F–statistic comparing the variance explained by two models: 1)A

model accounting for both the growth rate and the nutrient mean effect and 2)A model

accounting only for the nutrient mean effect. A yet simpler approach to eliminating the

nutrient dependent mean level of expression is to normalize the data for each gene across

each nutrient to mean (arithmetic average) zero (zero–centering) and then explain the

observed variance in the normalized data by only two parameters: the growth rate µ and

a gene specific constant. Because of its parsimonious and conceptual simplicity, I will use

this approach. The results of fitting such a model to the data for all carbon sources and

limitations (Fig.2.3) indicate that at a stringent p value cutoff of 10−6, the model explains

a significant fraction of the variance in the expression of about 1500 genes. In keeping to

previous work, I also plot the distribution of slopes for all genes as a bar–plot histogram

Fig.2.4A. Because of the large number of genes that fit the model well and the significant

difference between their slopes and the slopes of the genes that do not fit the model well,

the results are more clearly emphasized when the bar–plot distribution is limited whose

fit to the model has high p values, Fig.2.4B.

As expected, the distribution of R2 values is shifted toward lower values compared to

the more complex model (2.2) but the significance for a set of about 2000 genes remains
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very high, p value< 10−5. A low p–value (and thus significant fit to the model) for a gene

indicates that a significant fraction of the variance in the expression levels of that gene can

be explained by a single growth rate slope; it does not mean that the gene has identical (or

even statistically indistinguishable) slopes in all limitations and carbon sources. It does

suggest, however, that the trends in the expression levels of genes with high R2 are likely

to be similar which can be seen to be the case indeed, Fig.2.5.

It is interesting to examine whether the genes used by Airoldi et al (2009) for growth

rate predictions are among the genes with universal growth rate response, Fig.2.6. As

expected and selected by Airoldi et al (2009), each of the genes used in the growth rate

model has the same slopes across all limitations on glucose carbon source, Fig.2.6. On

ethanol carbon source, many of those genes have expression profiles similar to those in
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Figure 2.6: Genes Used in Predicting Growth Rate by Airoldi et al (2009). For notation see Fig.2.5

glucose and still correlate well to growth rate while the expression of other genes do not

show good correlation to growth rate. Based on this result, any small set of genes from

the cluster of universal growth rate response depicted on Fig.2.5 should perform better in

estimating the growth rate of yeast cultures independent of the carbon source. Predicting

growth rate by gene expression is easy and such a small set of genes might be chosen

simply on the basis of large slopes and high R2 as Airoldi et al (2009) did. Almost as

easy and theoretically better justified is choosing such a gene set by sparse `1–regularized

logistic regression (Friedman et al, 2009; Liu et al, 2009), which is likely to result in a

model with higher predictive accuracy.

Given the large number of growth rate response genes, one may expect the presence

of a large growth rate component in the variance in gene expression levels. Such a

growth rate response component is indeed present in the singular value decomposition

(Golub and Kahan, 1965; Alter et al, 2000) of the gene expression data, Fig.2.7. The

first left singular vector (accounting for 46% of the variance) is strongly correlated to
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Figure 2.7: Singular value decomposition (SVD) of the gene expression data. Top panel corresponds to the
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the growth rate. Actually, it is anticorrelated on Fig.2.7 but in the context of singular

value decomposition (SVD) correlation and anticorrelation to a factor are the same since

flipping the signs of the corresponding singular vectors results in SVD that is just as

valid and explains the variance in the data just as well. The strong correlation between

growth rate and the first singular vector is not entirely surprising since the growth rate

is the only systematic design variable common to all conditions and gene expression is

strongly correlated. It is, however, reassuring and indicative of a very substantial growth

rate response component common to nutrient limitations and carbon sources. The fact

that the elements corresponding to ethanol carbon source are larger reflects the fact that

the correlations between gene expression changes in ethanol carbon source conditions

are stronger than the correlations between glucose carbon source conditions. The second

singular vector is very hard to interpret. The third one correlates strongly to growth rate

but in the opposite directions for glucose and ethanol carbon source, suggesting that this
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Gene Ontology Term Cluster freq. Genome freq. Corrected p–val FDR
vacuolar protein
catabolic process 84/1148 118/7274 9× 10−39 0.00%

stress response 269/1148 848/7274 1× 10−33 0.00%
autophagy 84/1148 118/7274 9× 10−28 0.00%
cell differentiation 79/1148 247/7274 1× 10−7 0.00%

Table 2.1: Overrepresented GO Terms for Genes with Negative Slopes. Full list can be found at: Negative
Slope Genes

Gene Ontology Term Cluster freq. Genome freq. Corrected p–val FDR
ribosome biogenesis 174/1103 437/7274 1× 10−33 0.00%
cellular biosynthetic
process 510/1103 2203/7274 8× 10−31 0.00%

regulation of
translation 90/1103 190/7274 2× 10−23 0.00%

posttranscriptional
regulation of gene
expression

510/1103 2203/7274 9× 10−21 0.00%

translation 254/1103 962/7274 1× 10−19 0.00%
mitochondrial
translation 57/1103 110/7274 2× 10−16 0.00%

Table 2.2: Overrepresented GO Terms for Genes with Positive Slopes. Full list can be found at: Positive
Slope Genes

vector corresponds to genes having opposite growth rate responses in glucose and ethanol

carbon source.

It is interesting to ask which are the biological processes overrepresented by the set of

genes with universal growth rate response. The simplest approach to finding such over

representation is to use the GO Term Finder, (Boyle et al, 2004). A very short summary

of the most highly overrepresented GO terms is provided in Table.2.1 and Table.2.2. The

full list together with the genes that belong to each GO term can be found at my growth

rate response website: GRR website, and directly from GO Terms for Negative Slope

Genes, and GO Terms for Positive Slope Genes The GO term trees for overrepresented

GO terms can be found in the appendix both for genes with negative slopes Fig.5.5 and

for genes with positive slopes Fig.5.6. The size and hierarchical structure of the tree
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require significant scaling down of the tree to be able to fit it on a single page. Since

the figure is vector graphics, however, it can be expanded to any size without any loss of

resolution.

Another way to visualize the genes with growth rate response common to any pair of

limitations and carbon sources is available at GRR website. Each set of genes defined on

the basis of growth rate response is analyzed for significantly overrepresented functions

and TFs likely to underly its regulation as described in section 2.5.

The large number of genes having universal growth rate response is a remarkable

and important finding. It is fully consistent with the expectation that making protein

(Table.2.2) is a major bottleneck for rapidly proliferating cells (Maaløe, 1979) and that

slowly growing cells need to recycle proteins and organelles, Table.2.1. The universal

growth rate response is also fully consistent with and supportive of the conjecture that

an intrinsic yeast metabolic cycle (YMC) underlies a substantial part of the growth rate

response, see Fig.4.6. Further evidence for and discussion of this conjecture can be found

in section 4.

Nonetheless, a significant fraction of genes have nutrient and carbon source specific

growth rate response. The identification and analysis of such genes is the subject of next

section.

2.2.3 Metabolites

First, I fit an exponential (linear in semi–log space) model to the metabolite data com-

puting a slope for each limitation. The rank ordered R2 compared to a null model of

randomized data for each metabolite indicates that there is clearly a growth rate trend in

the data, Fig.2.8
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Figure 2.8: Goodness of fit of a linear model to the metabolite data.

The slopes computed for the phosphate and the ethanol limitations correlate remarbaly

well Fig.2.9. Many of the metabolites with similar slopes in the ethanol and the phosphate

limitations (Fig.2.9) are amino acids and have positive slopes, which is consistent with

the strong up–regulation of genes catalyzing amino acid bio–synthetic reactions Fig.2.16.

The metabolite slopes in the nitrogen limitation, however, are significantly different from

those in the ethanol and phosphate limitations, Fig.2.10. The differences in the nitrogen

limitation are reminiscent to differences observed by Boer et al (2008) on glucose carbon

source. One of the clear distinctions of the metabolites in nitrogen limited cultures is the

very low level of amino acids at the slowest growth rate at which the nitrogen shortage is

most severe Fig.1.15.

44



−30 −20 −10 0 10 20 30
−30

−20

−10

0

10

20

30

Ethanol Limitation in Ethanol

P
h
o
sp
h
a
te

L
im

it
a
ti
o
n
in

E
th
a
n
o
l

Figure 2.9: Correspondence of metabolite slopes for the ethanol and the phosphate limitations. Only
metabolites with high R2 (R2 > 0.85) for both the phosphorus and the ethanol limitations are plotted.
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Figure 2.10: Correspondence of metabolite slopes between the nitrogen limitation and the ethanol &
phosphate limitations. Only metabolites with high R2 (R2 > 0.85) for the limitations corresponding
to the x and the y axes are plotted.
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2.3 Processes and Networks with Differential Growth Rate

Response

In addition to genes with a common growth rate response, there are sets of genes whose

growth rate response is specific to nutrient limitations and carbon sources. To identify

such sets of genes, I first compute a condition (limitation and carbon source) specific

slopes for each gene. Next, I want to identify the biological processes overrepresented by

those genes similarly to section 2.2. One possibility is to use the GO Term Finder (Boyle

et al, 2004) again. Because of its drawbacks outlined in subsection 2.3.1, however, I

will instead compare and quantify the differences between the distributions of nutrient

specific slopes for predefined sets of genes (most of which correspond to GO terms) and

the distribution of slopes (for the same nutrient) for all genes.

2.3.1 Methodology

The GO Term Finder has a number of drawbacks including:

1. The list of genes input to the GO Term Finder has to be defined based on thresh-

olding a quantity of interest, such as the magnitude of growth rate response slopes

or goodness of fit to a model, R2. Often, the optimal position for such thresholding

is hard to determine and justify.

2. Even if a good threshold is found and used, its application results in loss of quan-

titative information about the magnitudes of the quantity that is being thresholded.

For example, when I thresholded genes based on R2 and slope in section 2.2 and

subsequently submitted a list to the GO Term Finder, no distinction was made

between a gene with a slope 15 and a gene with a slope 3. Most quantitative

information in the data is not used.
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3. Some physiological processes, such as the growth rate response, have genome–

wide consequences and affect a very large number of genes. Analyzing a long

list of affected genes can greatly reduce the power to find statistically significant

enrichment for biological functions performed by smaller sets of genes. For exam-

ple, submitting a query list of 103 genes (such as genes with universally positive

growth rate response, section 2.2) is associated with a relatively large probability

that all 5 genes involved in a particular function will be in the list even when

the list is sampled from the genome at random. Thus, such a test does not have

the statistical power to identify a growth rate response specific to a biological

processes performed by small sets of genes no matter how extreme and pronounced

the growth rate response of those processes and genes is.

These drawbacks can be greatly mitigated by applying a simple non-parametric statistical

analysis based on comparing the distribution of the quantity of interest (such as growth

rate slope) for a predefined group of genes and the corresponding distribution for the

whole genome. I will use this method for one dimensional comparison (only for the

growth rate slopes) but it can be generalized easily to high dimensional comparisons

including multiple characteristics of interest. As a simple summary statistic quantifying

the magnitude of the growth rate response for each gene set, I will use the mean slope. I

choose the mean slope over the median because I do not want to lose the effect of outliers,

the genes whose growth rate response slopes are most extreme. Depending on the desired

outcome, one might choose another summary statistic. To quantify the significance of

the difference between the distribution for a particular gene set and the distribution for

all genes, I use Wilcoxon rank–sum (Mann Whitney) test. It is a non-parametric test

for comparing two distributions without making assumptions about their shapes. It gives

the probability of obtaining greater observations in one population versus the other by
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chance alone. The null hypothesis in the rank–sum test is that both samples have the

same probability of exceeding each other.
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2.3.2 Clustergram of Slopes

An intuitive way to display similarities and differences in growth rate response between

different carbon sources and nutrient limitations is as a clustergram of slopes, Fig.2.11.

For each set of growth rates on the same carbon source and nutrient limitation, I com-

pute a slope for each gene. Those slopes are plotted as a heat map matrix plot color

coded in red/white/blue spectrum to distinguish this type of derivative data from the gene

expression data presented in red/black/green spectrum, Fig.2.11.

One obvious difference is that the slopes on ethanol carbon source tend to be larger

in absolute value than the slopes on glucose carbon source as demonstrated by the more

intense colors of the first set of three columns as compared to the second set of three

columns. The same difference is quantified by the larger variance of the distribution

of slopes in ethanol carbon source, Fig.5.2. A second global feature is that the slopes

in carbon and phosphate limitations appear more similar to each other compared to the

slopes in nitrogen limitation. This trend can be quantified by the Pearson correlations

between the slopes computed by averaging across genes, Fig.5.3.

Another salient feature of the clustergram is that some genes have very similar slopes

across all conditions (the universal growth rate response), some genes have very similar

slopes for each carbon source but different slopes across carbon sources, and other genes

have limitation specific slopes. To explore systematically the biological functions repre-

sented by those sets of genes and assess the statistical significance for each set of genes,

in the next subsection I apply the analysis described in the Methodology subsection 2.3.1.

Since the absolute magnitude of the fold changes (third set of columns on Fig.2.11) are

smaller than the absolute magnitude of the slopes, the clustering groups genes primarily

by slopes but not by fold change. To detect structure in the fold changes, I cluster them

alone, Fig.2.12. The clustergram of fold changes shows that substantial number of genes
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Figure 2.11: A clustergram of slopes and fold changes. The first set of 3 columns corresponds to slopes in
cultures growing on ethanol carbon source and limited on carbon/ethanol (C), nitrogen (N) and phosphorus
(P). The second set of 3 columns corresponds to slopes in cultures growing on glucose carbon source and
limited on carbon/glucose (C), nitrogen (N) and phosphorus (P). The third set of 3 columns corresponds
to fold change difference in expression levels between in cultures growing on ethanol carbon source and
glucose carbon source. The columns again correspond to the same three limitations: carbon (C), nitrogen
(N) and phosphorus (P).

are expressed at levels specific to the carbon source across all limitations. There are also

some limitation specific differences in mean expression levels, Fig.2.12.
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Figure 2.12: A clustergram of fold changes. The set of 3 columns corresponds to fold change between
cultures growing on ethanol carbon source and culture grown on glucose carbon source and limited on
carbon (C), nitrogen (N) and phosphorus (P). Each column corresponds to a limitation. The similarity
metric (non–centered correlations) is computed using all data shown in the clustergram.
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2.3.3 Clustergram of GO Terms

To summarize the mean slopes and fold changes between ethanol and glucose carbon

source for genes from different functional groups, I plot a clustergram of GO terms,

Fig.2.13. The clustergram is analogous to the one on Fig.2.11 except that the rows

correspond to GO terms rather than individual genes.
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Figure 2.13: Slopes and Fold Change for GO Terms. The clustergram is analogous to the one on Fig.2.11
except that the rows correspond to GO terms rather than individual genes. The first set of 3 columns
corresponds to slopes in cultures growing on ethanol carbon source and limited on carbon/ethanol (C),
nitrogen (N) and phosphorus (P). The second set of 3 columns corresponds to slopes in cultures growing
on glucose carbon source and limited on carbon/glucose (C), nitrogen (N) and phosphorus (P). The third
set of 3 columns corresponds to fold change difference in expression levels between in cultures growing
on ethanol carbon source and glucose carbon source. The columns again correspond to the same three
limitations: carbon (C), nitrogen (N) and phosphorus (P). The similarity metric (non–centered correlations)
is computed using all data shown in the clustergram.
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2.3.4 Gene sets

The clustergram of GO terms provides a high–level comprehensive overview of the growth

rate response of genes from various functional groups. To go beyond the high–level

summary, I explore in more details the distributions of growth rate responses of the sets of

genes defined based on the Gene Ontology and different expression levels in auxotrophic

and prototrophic cultures. I start with functional groups whose growth rate response is

expected and then more toward more unexpected results.
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Gene set 1: Mitochondrial envelope
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Figure 2.14: Mitochondrial envelope. Interactive Plots The top panel of distributions corresponds to ethanol
carbon source and the bottom one to glucose carbon source. Each column corresponds to a limitation
(carbon source, nitrogen and phosphate) as indicated on the top. The black distributions in each panel are
for all genes in the genome and the colored distributions are for mitochondrial envelope genes only. The
clustergrams display gene expression (left) and slopes & fold changes (right). The corresponding rows in
the two clustergrams display data for the same genes and the clustering (permutation) is based on similarity
metric (non–centered correlations) computed using only the slopes data (left panel).

Consistent with the requirement for increased aerobic–respiration at fast growth on

ethanol carbon source, many mitochondrial genes have positive slopes. This trend is

illustrated with the mitochondrial envelope genes, Fig.2.14. The genes with positive

slopes are the same across all limitations on ethanol carbon source, first set of three

columns in the clustergram of slopes. Interestingly a subset of the genes with positive
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slopes in ethanol also have positive slopes in glucose carbon source. Once again the

nitrogen limitations (middle columns in the first and second sets of columns of the slopes

clustergram) are similar to each other and stand apart from the carbon and phosphate

limitations.
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Gene set 2: Cellular respiration
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Figure 2.15: Cellular respiration Interactive Plots The top panel of distributions corresponds to ethanol
carbon source and the bottom one to glucose carbon source. Each column corresponds to a limitation
(carbon source, nitrogen and phosphate) as indicated on the top. The black distributions in each panel
are for all genes in the genome and the colored distributions are for genes from the GO term generation
of precursor metabolites and energy. The clustergrams display gene expression (left) and slopes & fold
changes (right). The corresponding rows in the two clustergrams display data for the same genes and the
clustering (permutation) is based on similarity metric (non–centered correlations) computed using only the
slopes data (left panel).

Similar to gene set 6, growth rate related increase in the expression of cellular respira-

tion genes is expected for cultures growing on ethanol carbon source.
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Gene set 3: Generation of precursor metabolites and energy

−14 −10 −5 0 5 10 14
0

0.1

0.2

0.3

/ /

p < 10−9

Carbon Source
E

th
an

ol
 C

S

−14 −10 −5 0 5 10 14
0

0.05

0.1

0.15

0.2

/ /

p < 10−4

Nitrogen

−14 −10 −5 0 5 10 14
0

0.05

0.1

0.15

0.2

0.25

0.3

/ /

p < 10−5

Phosphate

−14 −10 −5 0 5 10 14
0

0.05

0.1

0.15

0.2

/ /

p < 100

Slopes

G
lu

co
se

 C
S

−14 −10 −5 0 5 10 14
0

0.05

0.1

0.15

0.2

/ /

p < 10−3

Slopes
−14 −10 −5 0 5 10 14

0

0.05

0.1

0.15

0.2

/ /

p < 10−14

Slopes

Figure 2.16: Generation of precursor metabolites and energy. See Interactive Plots. The top panel of
distributions corresponds to ethanol carbon source and the bottom one to glucose carbon source. Each
column corresponds to a limitation (carbon source, nitrogen and phosphate) as indicated on the top. The
black distributions in each panel are for all genes in the genome and the colored distributions are for
genes from the GO term generation of precursor metabolites and energy. The clustergrams display gene
expression (left) and slopes & fold changes (right). The clustergrams display gene expression (left) and
slopes & fold changes (right). The corresponding rows in the two clustergrams display data for the same
genes and the clustering (permutation) is based on similarity metric (non–centered correlations) computed
using only the slopes data (left panel).

Some of the genes in this set are mitochondrial such as the TCA cycle (Fig.2.31)

which explains at least in part the significantly positive slopes of this set of genes. In fact

given the central role of precursor metabolites and energy in growth the more surprising
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funding is that this set of genes does not have significantly positive slopes on glucose

carbon source.

60



Gene set 4: Vacuole
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Figure 2.17: Vacuole. See Interactive Plots. The top panel of distributions corresponds to ethanol carbon
source and the bottom one to glucose carbon source. The black distributions in each panel are for all genes
in the genome and the colored distributions are for vacuolar genes only. Each column corresponds to a
limitation (carbon source, nitrogen and phosphate) as indicated on the top. The clustergrams display gene
expression (left) and slopes & fold changes (right). The clustergrams display gene expression (left) and
slopes & fold changes (right). The corresponding rows in the two clustergrams display data for the same
genes and the clustering (permutation) is based on similarity metric (non–centered correlations) computed
using only the slopes data (left panel).

The vacuoles are part of the universal growth rate response, which most likely reflects

the increased rate of recycling in slowly growing cells. The distribution of slopes for the

vacuole genes is shifted significantly toward negative slopes (left) across all limitations

on all carbon sources. This effect is particularly strong in the nitrogen limited cultures,

middle column of distributions, Fig.2.17. Again the genes with negative slopes are the
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same across limitations (as evident from the clustergram of slopes), especially the ones

on ethanol carbon source.
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Gene set 5: Peroxisome
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Figure 2.18: Peroxisome. Interactive Plots. The top panel of distributions corresponds to ethanol carbon
source and the bottom one to glucose carbon source. Each column corresponds to a limitation (carbon
source, nitrogen and phosphate) as indicated on the top. The black distributions in each panel are for all
genes in the genome and the colored distributions are for peroxisomal genes only. The clustergrams display
gene expression (left) and slopes & fold changes (right). The corresponding rows in the two clustergrams
display data for the same genes and the clustering (permutation) is based on similarity metric (non–centered
correlations) computed using only the slopes data (left panel).

As noted by Brauer et al (2008), peroxisomal genes are overrepresented among the

genes with negative slopes as revealed here by the distribution of slopes for peroxisomal

genes being shifted significantly to the left for all limitations on glucose carbon source.

Interestingly, this is not the case for glucose carbon source, top row of distributions,

Fig.2.18. In part, this difference can be explained by the fact that gluconeogenesis genes
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(catalyzing reactions from the glyoxylate cycle) are localized in the peroxisomes and

expressed at high levels and with positive slopes on ethanol carbon source.
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Gene set 6: Cofactor metabolic process
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Figure 2.19: Cofactor metabolic process. Interactive Plots. The top panel of distributions corresponds
to ethanol carbon source and the bottom one to glucose carbon source. Each column corresponds to a
limitation (carbon source, nitrogen and phosphate) as indicated on the top. The black distributions in each
panel are for all genes in the genome and the colored distributions are for cofactor metabolic process only.
The clustergrams display gene expression (left) and slopes & fold changes (right). The clustergrams display
gene expression (left) and slopes & fold changes (right). The corresponding rows in the two clustergrams
display data for the same genes and the clustering (permutation) is based on similarity metric (non–centered
correlations) computed using only the slopes data (left panel).

A diverse group of genes involved in the synthesis of cofactors or using cofactors have

significantly positive slopes in ethanol carbon source across all limitations. A subset of

those genes also have modestly positive slopes in glucose across all limitations but as a

whole for glucose carbon source the slopes of this gene set is not significantly different

from the slopes for all genes.
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Gene set 7: Microtubule organizing center
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Figure 2.20: Microtubule organizing center. See Interactive Plots. The top panel of distributions
corresponds to ethanol carbon source and the bottom one to glucose carbon source. Each column
corresponds to a limitation (carbon source, nitrogen and phosphate) as indicated on the top. The
black distributions in each panel are for all genes in the genome and the colored distributions are for
microtubule organizing center genes only. The clustergrams display gene expression (left) and slopes &
fold changes (right). The clustergrams display gene expression (left) and slopes & fold changes (right). The
corresponding rows in the two clustergrams display data for the same genes and the clustering (permutation)
is based on similarity metric (non–centered correlations) computed using only the slopes data (left panel).

As evident from gene 7, some genes with cell–cycle function have negative slopes.

Looking at the slope distributions of cell–cycle related genes indicates that many other

indeed gene sets for many functions related to mitosis and cell division have significantly

negative slopes as exemplified here by the microtubule organizing center Fig.2.20. Such

functions include DNA replication, chromosome segregation and cell–cycle regulated
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genes. The clustergram of slopes (Fig.2.20) indicates that the genes with negative slopes

are the same across all limitations on ethanol carbon source. This finding is surprising in

the context of bud index linearly correlated to growth rate, subsection 1.4.2, Fig.1.6. The

most probable explanation (consistent with all data) that I know of involves the YMC and

is discussed in chapter 4.
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Gene set 8: Heterocycle metabolic process
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Figure 2.21: Heterocycle metabolic process. Interactive Plots. Notation is the same as in Fig.2.19 with
colored distributions corresponding to the slopes of genes involved in heterocycle metabolic process.

This set includes gene participating in the biosynthesis of histidine, purines, pyrim-

idines, thiamine, and other heterocyclic compounds. Since all these compounds are

required for biomass production and growth its not surprising to see the growth rate

induction of the genes involved in their biosynthesis. The interesting observation is that

they are not induced or induced to a much smaller extent in cultures growing on glucose

carbon source. I may only speculate about possible reasons. Two prominent possibilities

are:
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1. In glucose carbon source, the abundance of metabolic intermediates is such that it

does not require the same level of enzyme induction. Since I measured very few

metabolites, this hypothesis is hard to evaluate on the basis of my metabolic data.

2. In glucose carbon source much of the regulation occurs at post-transcriptional level.
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Gene set 9: Vitamin metabolic process

−14 −10 −5 0 5 10 14
0

0.1

0.2

0.3

/ /

p < 10−7

Carbon Source
E

th
an

ol
 C

S

−14 −10 −5 0 5 10 14
0

0.05

0.1

0.15

0.2

/ /

p < 10−5

Nitrogen

−14 −10 −5 0 5 10 14
0

0.05

0.1

0.15

0.2

0.25

0.3

/ /

p < 10−7

Phosphate

−14 −10 −5 0 5 10 14
0

0.05

0.1

0.15

0.2

0.25

0.3

/ /

p < 10−3

Slopes

G
lu

co
se

 C
S

−14 −10 −5 0 5 10 14
0

0.05

0.1

0.15

0.2

/ /

p < 10−1

Slopes
−14 −10 −5 0 5 10 14

0

0.05

0.1

0.15

0.2

0.25

/ /

p < 10−1

Slopes

Figure 2.22: Vitamin metabolic process Interactive Plots Notation is the same as in Fig.2.19 with colored
distributions corresponding to the slopes of genes involved in heterocycle metabolic process.

Many of the vitamin related genes in this group are cofactors for mitochondrial en-

zymes that show transcriptional induction themselves, such as the enzymes catalyzing the

TCA cycle, see Fig.2.31. Thus up–regulation of gene from this set is another indicator of

growth rate induced increase in the TCA cycle and related biochemical reactions involved

in the production of energy and intermediate metabolites.
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Gene set 10: Oxidoreductase activity
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Figure 2.23: Oxidoreductase activity Interactive Plots Notation is the same as in Fig.2.19 with colored
distributions corresponding to the slopes of genes involved in oxidoreductase activity.

Similar to some of the previous gene sets, many of the genes in this set that have

positive slopes on ethanol carbon source are related to mitochondria, which reinforces

the observation that most mitochondria related genes have positive growth rate response

on ethanol carbon source.
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Gene set 11: Auxotrophic starvation & cell–division

I first explore the growth rate response of a gene set (11) identified on the basis of different

expression levels between prototrophs and auxotrophs growing on glucose carbon source,

see Section ??. The genes in set 1 have significantly (p < 10−10) lower expression

in auxotrophs compared to prototrophs, Fig.2.24. The difference in expression levels is
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Figure 2.24: Gene expression profiles for genes in gene set 11. All cultures were grown on glucose carbon
source and were limited on the nutrients indicated on the x–axis. Each nutrient limitation has 6 growth rate
plotted in ascending order. Data from (Brauer et al, 2008).

also depicted in the form of distributions of fold changes and compared to the distribution

of fold changes for ethanol carbon source, Fig.2.25. Based on analysis with the GO Term

Finder, functions related to cell–division are strongly overrepresented (p < 10−13) by

genes in set 11. Such functions include chromosome organization, microtubule spindle,

DNA replication, DNA repair, DNA packing, mitotic cycle, cell cycle, and M phase. In

addition, genes in set 11 overlap significantly (p < 10−8) with the targets of transcription
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Figure 2.25: Distributions of fold changes for genes in gene set 11

factor MBP1 identified by ChIP–chip studies (Harbison et al, 2004; MacIsaac et al, 2006),

see section 2.5. Furthermore, set 11 genes have significantly negative slopes on ethanol

carbon source across all limitations, Fig.2.26.
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Figure 2.26: Distributions of slopes no different carbon sources and limitations for genes in gene set 11
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2.4 GRR of Well Characterized Pathways

This section details transcriptional changes in mRNAs corresponding to enzymes cat-

alyzing key biochemical reactions whose fluxes are expected to change significantly with

growth rate, nutrient limitations and the carbon source.

2.4.1 Ethanol Utilization

The first reaction in ethanol utilization is its oxidation to acetaldehyde by alcohol dehy-

drogenases. Yeast has 5 isoenzymes catalyzing this reaction, ADH1 to ADH5, Fig.2.27.

The isoenzyme showing strongest induction (about 30 fold) on ethanol carbon source
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Figure 2.27: Expression levels of mRNAs coding for alcohol dehydrogenases in ethanol (left, black bars)
and glucose (right, blue bars) carbon source. The growth rates are plotted as bars on the top and also
denoted on the x–axis with number 1,2,3 corresponding to growth rates 0.05, 0.10, 0.14/0.15h−1. The
letters correspond to limitations as follows: E– ethanol; G–glucose; N–nitrogen; P–phosphate; Left panel
is the fold change gene expression data. The right panel is the data normalized to zero mean for each
limitation to emphasize growth rate trends.

across all nutrient limitations is ADH2 which is known to be the isoenzyme catalyzing

the oxidation of ethanol. This indicates that at least some of the up regulation required

for ethanol catabolism is accomplished by increasing the concentration of the ADH2

mRNA which likely is reflected in making more enzyme as well. Interestingly, ADH2

expression is induced equally strongly in the Glu limited cultures while repressed in P

and N limited cultures using Glu as a carbon source. This expression pattern suggests

74



that ADH2 expression is more likely repressed by glucose rather than induced by ethanol.

ADH3 is also induced in ethanol carbon source (about 2-4 fold) with positive slopes in

all nutrient limitations, which likely reflects shuffling of NADH from the mitochondria to

the cytoplasm that increases with the growth rate.

The second reaction in ethanol utilization is oxidation of acetaldehyde to acetate which

is catalyzed by aldehyde dehydrogenase for which there are also 5 isoenzymes, ALD2 to

ALD6, Fig.2.28. The isoenzymes induced most strongly are ALD2, ALD3 and ALD6. The
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Figure 2.28: Aldehyde dehydrogenases. Notation as in Fig.2.27

first two are known to be repressed by glucose and induced by ethanol and stress and the

latter is unique among the aldehyde dehydrogenases in using NADP+ instead of NAD+

as a cofactor. This cofactor specificity is crucially important in the context of growth

as reduced NADP+ (NADPH) is required in many biosythetic reactions but produced by

only a few reactions. In growth on ethanol, the only other reaction generating NADPH

reducing power is isocitrate dehydrogenase ADP2 whose mRNA is also very strongly

induced across all limitations on ethanol carbon source. Consistent with expectations for

increasing demand for NADPH with increasing growth grate, ALD6 (and ADP2) have

positive slopes on ethanol carbon source, Fig.2.28.

The third reaction in ethanol utilization is the transfer to CoA to acetate. This transfer

might be catalyzed by acetyl-CoA synthetases, which uses CoA and ATP as substrates or

by CoA transferase which transfers CoA from succinyl–CoA to acetate, ACH1. Yeast has
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Figure 2.29: Acetyl-CoA synthetases. Notation as in Fig.2.27

two acetyl-CoA synthetases, ACS1 and ACS2. ACS1 has a positive slope and is induced

very highly (up to 120 fold) across all limitations on ethanol carbon source and only in

glucose limitation (to a slightly smaller extent) on glucose carbon source in a manner

analogous to ADH2. ACS2 shows only modest induction (up to 2-3 fold) with a slightly

positive slope, Fig.2.29. The acetyl-CoA transferase ACH1 is also induced highly, up to

30 fold.

The next step in ethanol catabolism is transporting acetyl–CoA across the mitochon-

drial and peroxisomal membranes. Major players in this process are the carnitine acetyl-

CoA transferases. CAT2, YAT1 and YAT2, Fig.2.30. All 3 genes show very strong up

regulation (up to about 250 fold) across all limitations on ethanol carbon source and very

large positive slopes (up to 40) except for YAT1 which is induced highly even at slow

growth.
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Figure 2.30: Acetyl and acyl transferases. Notation as in Fig.2.27

76



In summary, all biochemical reactions involved in the oxidation of ethanol to its

inclusion in the TCA are catalyzed by enzymes whose corresponding mRNAs are up

regulated on ethanol carbon source and most of them also have positive growth rate

response (e.g positive slopes). This observation indicates that transcriptional regulation

plays a role in in the utilization of ethanol and growth rate control.

2.4.2 Central Carbon Metabolism

Krebs cycle

Once in the mitochondria, acetyl–CoA is fed into the TCA and oxidized for energy or

used for generating intermediates for anabolic processes. Since TCA is a major hub

through which ethanol has to pass before it can be used for energy or building blocks,

the flux through the TCA is expected to increase with growth rate on ethanol carbon

source. Consistent with this expectation, the slopes of mRNAs corresponding to TCA

enzymes are overwhelmingly positive, Fig.2.31 and 2.32.

Glyoxylate Cycle & Gluconeogensis

Yeast growing on ethanol must synthesize glucose (gluconeogensis) for the essential

carbohydrates, glycosylated proteins and of course as an intermediate in the synthesis of

pentose and deoxypentose for nucleic acids. The only known pathway for making glucose

from acetyl–CoA is the glyoxylate cycle. The first biochemical reaction separating the

glyoxylate cycle from TCA is isocitrate lyase (ICL1 and ICL2) catalyzing the formation

of succinate and glyoxylate from isocitrate. Consistent with expectation, ICL1 is strongly

induced on ethanol carbon source (Fig.2.33) while ICL2 to a smaller extent. Remarkably,

both isocitrate lyases are also induced in the glucose limitation suggesting that it is the
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Figure 2.32: Expression of TCA mRNAs. Notation as in Fig.2.27

lack of glucose rather than the presence of ethanol that results in the increased expression

levels. This mechanism of glucose repression rather than ethanol induction can be ra-

tionalized by realizing that a single repression mechanism can accomplish the regulation

that otherwise might require many induction mechanism, e.g ethanol, glycerol, acetate
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Figure 2.33: Glyoxylate Cycle. Notation as in Fig.2.27

and pyruvate induction mechanisms. The next pair of isoenzymes in the glyoxylate cycle

(MSL1) and (DAL7/MSL2) catalyze the synthesis of malate from the acetyl-CoA and

the glyoxylate produced in the first reaction. Those two malate synthases have elevated

levels in ethanol carbon source, especially MSL1 whose expression pattern is similar to

ICL1. Both malate synthases and ICL1 show nitrogen derepression in the ammonium

limited cultures on glucose carbon source which most likely reflects the role of those

enzymes in nitrogen salvage from purine catabolism. Some of growth rate slopes of

mRNAs corresponding to the glyoxylate cycle enzymes are slightly positive (Fig.2.33)

but they are relatively small compared to large differences in the expression of those

mRNAs between ethanol and glucose carbon source. This observation is consistent with

the possibility that regulation of the glyoxylate cycle is largely a function of glucose

repression.

Discussion & Conclusion

Our understanding of the many biochemical reactions involved in nutrient catabolism

makes robust predictions about the reactions whose metabolic flux should change signif-

icantly and it is interesting to explore the isoenzymes whose levels change significantly

and are thus likely to mediate the expected changes in metabolic fluxes. The level

at which those changes happen, however, is often not known. The flux of a reaction
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can increase as a consequence of changing the concentrations of the reactants and the

products and/or changing the activity of the enzyme catalyzing the reaction. Such change

in enzyme activity may come from posttranslational modifications of the enzyme, chang-

ing its localization or changing its amount which can be mediated either by change in

transcription or change in the concentration in the level of the corresponding mRNA.

Therefore, even for the best studied biochemical reactions the changes in the mRNAs

levels of the corresponding enzymes cannot be predicted without experimental data.

Thus, I use mRNA data to characterize the level at which the flux changes and the

isoenzymes that are likely to catalyze the reactions. Remarkably, I find that most expected

changes in biochemical fluxes are reflected in changes of mRNA levels
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2.5 Regulation of Growth Rate Response

In the preceding sections, I identified a set of about 1500 genes with universal growth

rate response and many other sets of genes with differential carbon source and limitation

dependent growth rate responses. The molecular interactions and regulatory mechanisms

(Slavov, 2012) underlying the expression patterns of these genes, however, are not well

characterized. Such characterization is the focus of this section. The data I have col-

lected allows me to infer regulatory interactions primarily at the level of transcription and

mRNA degradation. In this section I use methods that allow only the inference of TFs

but in the next chapter I apply RCweb (Slavov, 2010) which allow me to infer mRNA

degradation as well.

2.5.1 Overlap between Gene Sets and TF Targets

One of simplest approaches to identifying transcription factors (TF) that might underly

the growth rate response is to compute the overlap between a set of genes defined to have

a type of growth rate response (such as universally upregulated with growth rate) and the

targets of a TF as identified independently from ChIP–chip (Harbison et al, 2004) and

other experiments (MacIsaac et al, 2006). Given a TF with n targets, a set of m growth

rate response genes selected out of N genes, the probability of observing an overlap of

k genes by chance alone is given by the cumulative mass function of the hypergeometric

distribution, Eq.2.2:

P (X ≥ k) =
i=∞∑
i=k

(
m
i

)(
N−m
n−i

)(
N
n

) = 1−
i=k−1∑
i=0

(
m
i

)(
N−m
n−i

)(
N
n

) (2.2)

The probability for seeing by chance alone the observed overlap between a set ofm genes

and the targets of the ith TF is the p value for the hypothesis that the ith TF contributes

to regulating the expression of the set of m genes. This approach has been used by

81



Fazio et al (2008) in the context of growth rate response. All results presented here are

computed by a perl script, which I wrote and is available upon request.

The chief advantages of this approach are its simplicity and the avoidance of inaccurate

assumptions typical to most other approaches. One of the most frequent assumption is

approximating TF activity with the level of its corresponding mRNA (Segal et al, 2003)

and I am going to use the results from the TF–targets overlap to assess the number of TF

for which this assumption might be applicable. In particular, I will record whether a TF

identified by the TF overlap method has an expression profile similar to its targets. I do

this using a very lenient criterion: For each TF whose targets overlap significantly with

a set of genes with a growth rate response, I record whether the mRNA corresponding to

the TF belongs to that set of growth rate responsive genes or not, last columns of Tables

2.3 through 2.10.

The TF–targets overlap approach also has, however, a number of disadvantages in-

cluding all problems discussed in the Methodology subsection 2.3.1. Furthermore, this

approach is likely to have very large number of false negatives (it lacks power) because

of the incomplete knowledge of the transcriptional network. This lack of power is most

severe for the ethanol carbon source since the experimental conditions used in the ChIP–

chip experiments do not include ethanol carbon source. Nonetheless, the rate of false

positives is likely to be very low: A very low p value for the overlap of the targets of the

ith TF and the jth gene set indicates high probability that the ith TF regulates the jth gene

set. Other disadvantages include the inability to detect combinatorial interactions, make

a quantitative model and derive experimentally testable predictions.
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Universal growth rate response

Tables 2.3 and 2.4 list the results from applying the TF–targets overlap approach to the

genes that fit the growth rate model from Section 2.2 best (highest R2) and decrease

in expression with growth rate, that is have negative growth rate slopes. I used the

TF Name Targets Set Overlap p val Reg
HSF1 43 807 12 10−2 Yes
STB4 10 807 5 10−3 No
MSN2 89 807 29 10−6 No
SUT1 68 807 17 10−3 No
MSN4 73 807 21 10−4 No
SKN7 147 807 35 10−4 No

Table 2.3: TF regulating the negative growth rate response. The first column is the name of the TF (hyper–
linked to SGD) The second column is the number of TF targets present in the MacIsaac et al (2006) results
at p ≤ 0.001 and conservation level 1. The third column is the number of input genes with universal
positive growth rate response, which is dependent on a threshold. The fourth column is the number of
genes common between the two sets (second and third columns). The forth column is the corresponding
p value computed from Eq.2.2. The last column indicates whether the mRNA corresponding to the TF is
present in the input set of genes that are regulated by the TF. The same designations and notations are used
for all tables in this subsection.

TF Name Targets Set Overlap p val Reg
HSF1 43 1127 17 10−3 Yes
SIP4 10 1127 5 10−2 No
STB4 10 1127 5 10−2 No
MSN2 89 1127 32 10−4 No
SUT1 68 1127 23 10−3 No
MSN4 73 1127 27 10−4 Yes
SKN7 147 1127 48 10−5 No

Table 2.4: TF regulating the negative growth rate response. The columns and notation are the same as in
table 2.3

TF targets published by (MacIsaac et al, 2006) at p ≤ 0.001 and conservation level 1

for both tables and throughout this section. In table Fig.2.3 I used the top 807 genes

with negative slopes while in table Fig.2.4, I used the top 1127 genes. For some genes

the results do not change substantially, while for others they do change underscoring a

problem discussed in the Methodology subsection 2.3.1. Based on these results the TFs
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for which there is strong evidence for mediating the universal growth rate response are

MSN2/MSN4 and SKN7 with weaker evidence for other TFs in the tables. For growth

on glucose carbon source in both aerobic and anaerobic conditions, Fazio et al (2008)

also found SKN7 but not MSN2/MSN4. A possible reason why Fazio et al (2008) did not

find MSN2/MSN4 might be that those TFs are not involved in the growth rate response in

anaerobic conditions. Given the strong overrepresentation of stress genes among the the

genes with negative slopes, MSN2/MSN4 are likely TFs to regulate the negative growth

rate response and indeed they are also found by FIRE (Elemento et al, 2007). All TFs

found by this analysis to be involved in the negative growth rate response are stress

response related TF, Table 2.4.

The TFs likely to mediate the positive growth rate response (increasing mRNA abun-

dance with growth rate) are listed in Tables 2.5 and 2.6 for two different levels of signifi-

cance (R2 thresholds). A prominent TF among those is RAP1 which was also found on

TF Name Targets Set Overlap p val Reg
BAS1 34 766 11 10−3 No
ABF1 241 766 47 10−3 No
SFP1 32 766 12 10−4 No
GAT3 9 766 5 10−4 No
FHL1 143 766 50 10−12 No
RAP1 105 766 31 10−6 No

Table 2.5: TF regulating the universal positive growth rate response. The columns and notation are the
same as in table 2.3

TF Name Targets Set Overlap p val Reg
BAS1 34 1089 14 10−3 No
ABF1 241 1089 60 10−3 No
SFP1 32 1089 14 10−4 No
GAT3 9 1089 5 10−3 No
FHL1 143 1089 58 10−10 No
RAP1 105 1089 38 10−6 No

Table 2.6: TF regulating the positive growth rate response. The columns and notation are the same as in
table 2.3
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glucose carbon source by FIRE (Airoldi et al, 2009; Elemento et al, 2007), by Regenberg

et al (2006), and by Fazio et al (2008). RAP1 is a DNA–binding protein involved in

either activation or repression of transcription, depending on binding site context. It also

binds telomere sequences and plays a role in telomeric position effect (silencing) and

telomere structure. FHL1 and SFP1 are TFs related to ribosomal biogenesis and RNA

processing and also identified by Fazio et al (2008) but not by FIRE (Airoldi et al, 2009;

Elemento et al, 2007). Given the overrepresentation to ribosomal and translation related

genes among the gene set with universal growth rate response, the involvement of FHL1

and SFP1 is not surprising. The other TFs in tables 2.5 and 2.6 are interesting but given

the weak evidence for their involvement the results are rather inconclusive.

Specific Growth Rate Response

In addition to the universal growth rate response, some sets of genes have a growth

rate response specific to some limitations and or to the carbon source. First consider

the growth rate response specific to ethanol carbon source. There is a high positive

correlation (+0.75) between the slopes in ethanol and phosphate limited cultures growing

on ethanol carbon source for the genes whose expression levels fit the exponential (linear

in semi–log space) model (R2 ≥ 0.85) in those conditions, Fig.2.34. An interactive

plot, hyper–linked to the data can be found at my growth rate website. The genes with

positive growth rate response at both limitations (and thus common to ethanol carbon

source) are likely to be regulated by the TFs listed in Table 2.7. The involvement of the

HAP transcription factors (HAP1-5) is consistent with the expected growth rate associated

increase in respiration on ethanol carbon source.

There is also an ethanol carbon source specific negative growth rate response (third

quadrant in Fig.2.34) and the TFs most likely to mediate it are in table 2.8.
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Figure 2.34: Correlation between slopes in ethanol and phosphate imitated cultures growing on ethanol
carbon source.

The genes in the fourth quadrant of Fig.2.34 having positive slopes in the ethanol

limitation but negative slopes in the phosphate limitation overlap significantly (p < 10−4)

with the targets of PHO4 which reflects the effect of the phosphate limitation.

Next I use another pairwise comparison between phosphate limited cultures in ethanol

carbon source and in glucose carbon source to identify TFs used differentially in those 2

carbon sources, Fig.2.35. The TF whose targets have more positive slopes in glucose
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TF Name Targets Set Overlap p val Reg
RTG3 48 914 17 10−4 No
BAS1 34 914 20 10−9 No
SIP4 10 914 5 10−3 No
CBF1 211 914 50 10−3 No
ABF1 241 914 55 10−3 No
GLN3 67 914 18 10−2 Yes
INO4 29 914 13 10−5 No
HAP4 47 914 17 10−4 No
GCN4 152 914 70 10−20 No
LEU3 21 914 9 10−3 No
HAP5 32 914 11 10−3 No
HAP1 106 914 27 10−3 No
HAP3 21 914 10 10−4 No
HAP2 50 914 20 10−5 No

Table 2.7: TF regulating the positive growth rate response in ethanol carbon source. The columns and
notation are the same as in table 2.3

TF Name Targets Set Overlap p val Reg
ZAP1 8 868 4 10−3 Yes
MBP1 131 868 35 10−4 Yes
RCS1 66 868 18 10−3 No
GTS1 12 868 5 10−2 Yes

Table 2.8: TF regulating the negative growth rate response in ethanol carbon source. The columns and
notation are the same as in table 2.3

TF Name Targets Set Overlap p val Reg
FKH1 98 230 11 10−3 Yes
FKH2 100 230 11 10−3 No
STB1 27 230 6 10−4 No
MBP1 131 230 23 10−10 No
SWI4 133 230 21 10−8 No
SWI6 140 230 22 10−9 No

Table 2.9: TF regulating the genes with different growth rate response between ethanol and glucose carbon
source corresponding to quadrant 2 of Fig.2.35. The columns and notation are the same as in table 2.3

carbon source compared to ethanol carbon source are summarized in table 2.9. Re-

markably all TFs in this group regulate cell–cycle genes. The FKH1 and FKH2 are

involved in regulating G2/M genes. The protein products of SWI4, SWI6 and MBP1 form

a complex that regulates the G1/S transition. STB1 has a role in regulating MBF-specific
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Figure 2.35: Correlation between slopes in phosphate imitated cultures growing on ethanol or glucose
carbon source.

transcription at Start and expression is cell–cycle regulated. It is phosphorylated by Cln-

Cdc28p kinases in vitro; unphosphorylated form binds Swi6p and binding is required for

Stb1p function.

The TF whose targets have more positive slopes in ethanol carbon source are enu-

merated in table 2.10. SIP4 most likely up–regulates the gluconeogensis genes required
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for growth in ethanol but not for growth on glucose. The HAP1-5 TFs are required for

growth on ethanol to induce respiration.

TF Name Targets Set Overlap p val Reg
RTG3 48 258 6 10−2 Yes
SIP4 10 258 4 10−5 No
STB4 10 258 4 10−5 No
HAP4 47 258 9 10−5 No
UME6 117 258 11 10−2 No
HAP5 32 258 5 10−3 No
HAP1 106 258 11 10−3 Yes
HAP3 21 258 7 10−6 No
HAP2 50 258 7 10−3 No

Table 2.10: TF regulating the genes with different growth rate response between ethanol and glucose carbon
source corresponding to quadrant 4 of Fig.2.35. The columns and notation are the same as in table 2.3

Complete and systematic identification of the genes, their GO terms and likely TF

regulators for any pair of limitations and carbon sources can be found at my growth rate

website.

Correlation between the Profiles of TFs and Their Targets

This overlap–based approach for identifying TFs is dependent of thresholds and lacks

power to identify many of the regulators. For the TFs with very low p values, however,

one may ask whether the mRNA corresponding to a TF is in the set of growth rate

response genes used to identify the TF. In other words, does the expression profile of

a TF correlate to the expression profiles of its targets ? For the majority of cases (final

columns of the tables presented in this subsection) this is not the case. Thus a very

important outcome from this analysis is that the level of a mRNA cannot be used as a

surrogate for the activity of its corresponding TF. Many of the approaches (Segal et al,

2003) for inferring TF regulation make and heavily relay upon this assumption, thus I

will not employ them for inferring regulatory interactions.
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Conclusions

The overlap approach is very simple, intuitive and results in a high confidence predictions

about the involvement of a few TF. However, the results are not quantitative, can be very

sensitive to thresholds and strongly biased towards TFs with large number of targets that

result in high enough statistical significance.

2.5.2 FIRE

FIRE (Elemento et al, 2007) is one of the few approaches for inferring transcriptional

regulation that that does not “approximate” activity of TFs with their corresponding

mRNAs. It is based on computing the mutual–information between DNA sequence

motifs and the expression levels of mRNAs, the expression levels are represented as the

presence or absence of mRNAs from a predetermined number of clusters.

To apply FIRE (Elemento et al, 2007), I clustered all growth rate data, both on ethanol

and on glucose carbon source using k–means algorithm with 10 clusters and Euclidean

distance as a similarity measure between expression profiles. The output of FIRE gener-

ated by the most current implementation iGET is depicted on Fig.2.36. The results from

the application of FIRE contain only a few TF and consensus sequences. Some of the

possible explanations for that include:

1. Loss of information due to representing large number of data points from the

expression profile of the ith gene with a single discrete number, the membership

of the ith gene to a cluster. This problem becomes increasingly significant with the

number of transcriptionally profiled conditions, e.g the size of the dataset.

2. Data discretization (into clusters) whose optimal number is hard to determine.

3. Limited number of TF motifs
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4. Estimation of mutual information depends critically on the accuracy of the esti-

mated joint and marginal distributions which is generally rather hard and in the

case of small samples impossible. This limits the application of FIRE only to genes

from relatively large clusters.

While both the TF target overlap method and FIRE result in useful inferences, they

have a number of drawbacks. To overcome these shortcomings, as well as to enable iden-

tifying combinatorial regulation (both by TFs and by mRNA degradation proteins) and

build a quantitative model with predictive power, I developed a new inference algorithm,

RCweb (Slavov, 2010). It is derived, tested and applied to the data in the next chapter.
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Figure 2.36: TFs identified by FIRE. FIRE was applied to the data clustered into 10 clusters,

92



Chapter 3

Regulation of the Growth Rate

Response

3.1 Introduction

The use of networks has become common in biology as a framework within which to

understand holistically complex biological systems and their emergent properties. Usu-

ally, the nodes (vertices) in biological networks are biomolecules and the links (edges)

correspond to their interactions and biochemical reactions. Since our knowledge of

the intermolecular interactions is incomplete, however, often the physical nature of the

edges is not clearly defined, especially in the so called relational networks. Despite the

strong interest in the problem and much research conducted on inferring intermolecular

interactions from high-throughput data, there are still serious unresolved challenges. One

of them is that intermolecular interactions and biochemical reactions are non-linear and

their exact explicit forms are generally not known. A second major problem is that de-

spite the significant advances in developing high-throughput experimental techniques for
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simultaneous measurement of the levels of many biomolecules (such as mRNAs), many

other molecules (such as metabolites, proteins and their posttranslational modifications)

still cannot be measured as efficiently on the same scale. The high-throughput exper-

imental detection of spatial localization of biomolecules and their modifications (such

as phosphorylation and methylation) that influence crucially bimolecular interactions are

even harder and still rather limited.

Despite these problems, researchers have attempted to infer network topologies, es-

pecially the topologies of transcriptional networks. These are bipartite networks (hav-

ing two types of nodes) and consist of transcription factors (TFs) and the target genes

regulated by the TFs. Most approaches to inferring transcriptional networks use the

mRNA levels of TFs as predictor variables (surrogates for the unobserved concentrations

of posttranslationally modified TFs) to explain the measured expression levels of mRNAs

(Segal et al, 2003). Furthermore, the inference algorithms usually incorporate a model

for computing conditional independence (using Bayesian networks or partial correlations

that often rely on assuming linear dependence between the expression level of an mRNA

and its regulator, the mRNA of the corresponding TF). The use of conditional indepen-

dence aims to avoid indirect interactions and identify only the direct physical interactions

in the inferred network.

In this work, I present a different perspective on the problem with emphasis on avoid-

ing the aforementioned assumptions. Since there are multiple levels of regulation be-

tween a mRNA and its corresponding active TF (regulation of translation, posttransla-

tional modifications and nuclear localization), RCweb accepts that the active forms of

TFs cannot be approximated with the levels of the corresponding mRNAs and treats TF

activities as unobserved variables. Indeed, the correlation between the mRNA of the

ith TF and the mRNAs whose transcription is regulated by the ith TF is rather poor

for many TFs as demonstrated in section 2.5.1. Furthermore, RCweb does not try to
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approximate the functional dependence between mRNAs and their regulators with a

particular functional form since the dependence can be very non-linear and highly co-

operative (e.g. having irreducible many-body components). Rather, RCweb attempts to

identify sets of genes regulated by the same regulators (which are treated as unobserved

variables) without knowing the molecular identities of these regulators a priori, e.g.

assign them to particular TFs or proteins degrading mRNA. Only later, based on further

experimental or computational analysis the regulators can be identified.

3.2 Generative Model

As mentioned previously,RCweb does not need to assume explicit functional dependence

between mRNAs and the levels of their regulators. The formal and general framework for

treating non–linear functions is outlined in the Appendix 5.3. Here, I review briefly the

application to a particular class of functions relevant to biological interactions and signal

transduction.

Consider the ith physiological condition in which the concentration of the jth mRNA

(Gij) is determined by its Qj regulators, ~x ≡ (x1, ..., xQj
) ≡ {xk}, k ∈ ωj , which are

the active posttranslationally modified proteins localized to their organelles of activities,

RNAs and small molecules (ligands) that control the production (transcription) and the

degradation of the Gj . These include, transcription factors (TFs), enzymes modifying

histones and nucleosomes, non-coding RNAs, proteins binding mRNAs and regulating

their degradation. For simplicity and intuition building we first deriveRCweb by assum-

ing a very likely explicit form (1) for the rate of production and degradation of Gj that

takes into account the active forms of TFs binding to the promoter ofGj , TFk for k ∈ ωj ,

as well as τj quantifying the degradation rate of Gj . For derivation of RCweb for the

general case [Gj] = Fj(~x) where Fj is any non-linear function of the regulators ~x see

95



5.3.

d[Gij]

dt
=
∏
k∈ωj

Vmaxk
[TFik]

nk

[TFik]nk +Knk
k

− 1

τj
[Gij] (3.1)

At steady-state d[Gij]/dt = 0 and (1) simplifies to:

[Gij] = τi
∏
k∈ωj

Vmaxk
[TFik]

nk

[TFik]nk +Knk
k

(3.2)

If [TF ]ik is approximated with the concentration of the corresponding mRNA and

the non-linear term is approximated with a linear one (2) can be solved easily. These

assumptions, however, are poorly justified and introduced only to ease the computation.

To avoid them, we reframe the problem and treat the active forms of TF as unobserved

variables:

log([Gij]) = log(τj) +
∑
k∈ωj

log(Vmaxk
[TFik]

nk

[TFik]nk +Knk
k

) (3.3)

log([Gij])︸ ︷︷ ︸
yij

= log(τj) +
∑
k∈ωj

log(Vmaxk)︸ ︷︷ ︸
coi

+
∑
k∈ωj

log(
[TFik]

nk

[TFik]nk +Knk
k

)︸ ︷︷ ︸
rik

(3.4)

yij = coi +
∑
k∈ωj

rik (3.5)

To infer the network, we need to find coi (a gene specific constant), ωj (the set of

regulators that control the expression of the jth gene) and rik (the numerical value of

the kth component function in the ith conditions that corresponds to regulators whose

levels and identities we do not know a priori) consistent with the measured levels of

messenger RNA for the jth gene for all physiological conditions, yij . If we assume 3.1

for the explicit form of the jth expression function (Fj), the component function rk is a

non–linear function of a single TF and rik is its numerical value at the ith physiological

condition. In the general case, however, rk can be any non-linear component function

(that may or may not have a closed form) of one or many TFs that takes into account their
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interactions (e.g. cooperative/synergistic effects), see 5.3. For a single mRNA (3.5) is an

ill-posed problem without a unique solution. However, equation (3.5) can be written in a

matrix form for all genes:

Y = RC (3.6)

The solution of this mathematic problem (3.6) is the subject of the next section

3.3 Introduction toRCweb

Factor analysis (FA) decompositions are useful for explaining the variance of observed

variables in terms of fewer unobserved variables that may capture systematic effects

and allow for low dimensional representation of the data. Yet, the interpretation of

latent variables inferred by FA is fraught with problems. In fact, interpretation is not

always expected and intended since FA may not have an underlying generative model.

A prime difficulty with interpretation arises from the fact that any rotation of the factors

and their loadings by an orthogonal matrix results in a different FA decomposition that

explains the variance in the observed variables just as well. Therefore, in the absence

of additional information on the latent variables and their loading, FA cannot identify

a unique decomposition, much less generative relationships between latent factors and

observed variables.

A frequent choice for a constraint implemented by principle component analysis (PCA)

and resulting in a unique solution is that the factors are the singular vectors (and thus

orthogonal to each other) of the data matrix ordered in descending order of their cor-

responding singular values. Yet, this choice is often motivated by computational con-

venience rather than by knowledge about the system that generated the data. Another

type of computationally convenient constraint applied to facilitate the interpretation of
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FA results is sparsity, in the form of sparse Bayesian FA (West, 2002; Dueck et al, 2005;

Carvalho and West, 2008), sparse PCA (d’Aspremont A, 2007; Sigg and Buhmann, 2008)

and FA for gene regulatory networks (Srebroand and Jaakkola, 2001; Pe’er et al, 2002).

However, papers that introduce and use sparse PCA do not consider a generative model

but rather use sparsity as a convenient tool to produce interpretable factors that are linear

combinations of just a few original variables. In sparse PCA, sparsity is a way to balance

interpretability at the cost of slightly lower fraction of explained variance.

The algorithm described in this paper (RCweb) also uses a sparse prior, but RCweb

explicitly considers the problem from a generative perspective. RCweb asserts that there

is indeed a set of hidden variables that connect to and regulate the observed variables via

a sparse network. Based on that model, I derive a network structure learning approach

within explicit theoretical framework. This allows to propose an approach for sparse FA

which is conceptually and computationally different from all existing approaches such as

K-SVD (M. Aharon and and Bruckstein, 2005), sparse PCA and other LARS (Bradley

et al, 2004) based methods (Banerjee et al, 2007). RCweb is appropriate for analyzing

data arising from any system in which the state of each observed variable is affected by a

strict subset of the unobserved variables. To assign the inferred latent variables to physical

factors,RCweb needs either data from perturbation experiments or prior knowledge about

the factors. This framework generalizes to non-linear interactions, which is discussed

elsewhere. Furthermore, I analyze the scaling of the computational complexity ofRCweb

with the number of observed and unobserved variables, as well as the parameter space

where RCweb can accurately infer network topologies and demonstrate its robustness to

noise in the data.
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3.4 Derivation

Consider a sparse bipartite graph G = (E ,N ,R) consisting of two sets of vertices N

and R and the associated set of directed edges E connecting R to N vertices. Define a

graphical model in which each vertex s corresponds to a random variable; N observed

random variables indexed by N (xN = {xs|s ∈ N}) whose states are functions of P

unobserved variables indexed byR, xR = {xs|s ∈ R}. Since the states of xN depend on

(are regulated by) xR, I will also refer to xR as regulators. The functional dependencies

are denoted by a set of directed edges E so that each unobserved variable xi|i ∈ R affects

(and its vertex is thus connected to) a subset of observed variables xαi
= {xs|s ∈ αi ⊂

N}. Given a dataset G ∈ RM×N of M configurations of the observed variables xN ,

RCweb aims to infer the edges E and the corresponding configurations of the unobserved

variables, xR.

If the state of each observed variable is a linear superposition of a subset of unobserved

variables, the data G can be modeled with a very simple generative model (3.7): The data

is a product between R ∈ RM×P (a matrix whose columns correspond to the unobserved

variables and the rows correspond to the M measured configurations) and C ∈ RP×N ,

the weighted adjacency matrix of G. The unexplained variance in the data G is captured

by the residual Υ.

G = RC + Υ (3.7)

This decomposition of G into a product of two matrices can be considered to be a type

of factor analysis with R being the factors and C the loadings. Even when P � M the

decomposition of G does not have a unique solution since RC ≡ RIC ≡ RQTQC ≡

R∗C∗ for any orthonormal matrix Q. Thus the identification of a unique decomposition

corresponding to the structure of G requires additional criteria constraining the decompo-
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sition. The assumption that G is sparse requires that C be sparse as well meaning that the

state of the ith observed vertex xi|i ∈ N is affected by a strict subset of the unobserved

variables xψi
= {xs|s ∈ ψi ⊂ R}, the ones whose weights in the ith column of C are

not zeros, Ciψi
6= 0 and Ciψ̄i

= 0 where ψ̄i is the complement of ψi. Thus, to recover

the structure of G,RCweb seeks to find a decomposition of G in which C is sparse. The

sparsity can be introduced as a regularization with a Lagrangian multiplier λ:

(Ĉ, R̂) = arg min
R,C
‖G−RC‖2

F + λ‖C‖0 (3.8)

In the equations above and throughout the paper ‖C‖2
F =

∑
i,j C

2
ij denotes entry-wise

(Frobenius) norm, and the zero norm of a vector or matrix (‖C‖0) equals the number of

non-zero elements in the array.

To infer the network topologyRCweb aims to solve the optimization problem defined

by (3.8). Since (3.8) is a NP-hard combinatorial problem, the solution can be simplified

significantly by relaxing the `0 norm to `1 norm (Bradley et al, 2004). Then the approx-

imated problem can be tackled with interior point methods (Banerjee et al, 2007). As an

alternative approach to `1 approximation, I propose a novel method based on introducing

a degree of freedom in the singular-value decomposition (SVD) of G by inserting an

invertible1 matrix B.

G = USVT ≡
(
US(BT )−1

)︸ ︷︷ ︸
R̂

(
BTVT

)︸ ︷︷ ︸
Ĉ

(3.9)

The prior (constraint) that Ĉ is sparse determines B that minimizes (3.8), and thus a

unique decomposition. The goal of introducing B is to reduce the combinatorial problem

to one that can be solved with convex minimization. When the factors underlying the

observed variance are fewer than the observations in G there is no need to take the full

SVD; if P factors are expected, only the first P largest singular vectors and values from

1B is always invertible by construction, see section 3.6.3 and equation (3.10)
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the SVD of G are taken in that decomposition so that USVT is the matrix with rank P

that best approximates G in the sense of minimizing ‖G−USVT‖2
F . Since conceivably

sparse decompositions may use columns outside of the best `2 approximation, RCweb

considers taking the first P ∗ for P ∗ > P singular pairs. Such expanded basis is more

likely to support the optimal sparse solution and especially relevant for the case when P

is not known. Such choice can be easily accommodated in light of the ability of RCweb

to exclude unnecessary explanatory variables, see section 3.6.3.

NextRCweb computes B based on the requirement that C is sparse for the case N >

P . To compute B, one may set an optimization problem (3.10). Once B is inferred, R̂

and Ĉ can be computed easily, R̂ = USB̂−1 and Ĉ = (VB̂)T .

B̂ = arg min
B
‖VB‖0, so that det(B) > 1 (3.10)

The constraint on B in (3.10) is introduced to avoid trivial and degenerate solutions,

such as B being rank deficient B. Thus the introduction of B reduces (3.8) to a problem

(3.10) that is still combinatorial and might also be approximated with a more tractable

problem by relaxing the `0 norm to `1 norm and applying heuristics (Cetin et al, 2002;

Candès et al, 2007) to enhance the solution. I propose a new approach,RCweb, outlined

in the next section.

3.5 RCweb

Assume that a sparse cTi corresponding to an optimal b̂i (the ith column of B̂) form

Vb̂i = cTi is known. Define the set of indices corresponding to non-zero elements in cTi

with ω− and the set of indices corresponding to zero elements in cTi with ω0. Furthermore,

define the matrix Vω0 to be the matrix containing only the rows of V whose indices are in

ω0. If ω0 and thus Vω0 are known, one can easily compute b̂i as the right singular vector
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of Vω0 corresponding to the zero singular value. Since cTi and ω0 are not known,RCweb

approximates b̂i (the smallest2 right singular vector of Vω0) with vs, the smallest right

singular vector of V. This approximation relies on assuming that a low rank perturbation

in a matrix results in a small change in its smallest singular vectors (Benaych-Georges

and Rao, 2009). Thus given that RCweb is looking for the sparsest solution and the

set ω− is small relative to N , the angle between the singular vectors of Vω0 and V is

small as well. Therefore, vs can serve as a reasonable first approximation of bi. Then

RCweb systematically and iteratively uses and updates vs by removing rows of V until

vs converges to bi or equivalently Vω0 becomes singular for the largest set of ω0 indices.

When Vω0 becomes singular, all elements of ci whose indices are in ω0 become zero.

RCweb also has an intuitive geometrical interpretation. Consider the matrix V map-

ping the unit sphere in RP (the sphere with unit radius from RP ) to an ellipsoid in RN .

The axes of the ellipsoid are the left singular vectors of V. In this picture, starting with

ω− = {∅} and ω0 = {1, . . . , N}, solving (3.10) requires moving the fewest number

of indices from ω0 to ω− so that Vω0 maps a vector from RP to the origin. How to

choose the indices to be moved? At each step RCweb chooses i|max|, the index of the

largest element (by absolute value) of the smallest axis of the ellipsoid which is the left

singular vector of V with the smallest singular value. RCweb moves i|max| from ω0

to ω− effectively selecting the dimension whose projection is easiest to eliminate and

removing its largest component, which minimizes as much as possible the projection in

that dimension. RCweb keeps moving indices from ω0 to ω− using the same procedure

until the smallest right singular vector of Vω0 converges to bi and the smallest singular

value of Vω0 approaches zero. RCweb is guaranteed to stop after at most (N−P+1) steps

since after removal of (N−P +1) indices from ω0, Vω0 will be at most rank P −1. If

RCweb finds a sparse solution it will converge in fewer steps.

2By smallest singular vector I mean the singular vector corresponding to the to the smallest singular
value
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1. Task:

b̂i = min
bT
i bi≥1

‖Vbi‖0

2. Initialization:

• ω− = {∅} and ω0 = {1, 2, . . . , N}

• Set K−1
ω0

= (VT
ω0

Vω0)
−1 = I ∈ RP×P

• Set J = 1;

• i|max| = arg max
(∑

j |Vij|
)

ω− = {i|max|}, ω0 = {i|i ∈ ω0, i 6= i|max|}

• Update K−1
ω0

= RankUpdate(K−1
ω0
,Vi|max|)

3. Cycle: J = J + 1 Repeat until convergence

• Find the eigenvector v for K−1
ω0

with the largest eigenvalue λmax

• If λ−1
max ≈ 0 or vJ → vJ−1, b̂i ≡ v; STOP

• Compute the left singular vector of Vω0

u = s−1Vω0v

• i|max| = arg max [(|u1|, . . . , |ui|, . . . , |uN |)];

• ω− = {ω−, i|max|}

ω0 = {i|i ∈ ω0, i 6= i|max|}

• Update K−1
ω0

= RankUpdate(K−1
ω0
,Vi|max|)

The above algorithm can compute a single vector, b̂i, which is just one column of B̂.

To find the other columns, RCweb applies the same approach to the modified (inflated)

matrix, which for the ith column of B is V(i) = V(i−1) + Vb̂ib̂
T
i for i = 2, . . . , P . Thus,

after the inference of each column of B RCweb modifies V(i−1) to V(i) (V(1) ≡ V) so
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that the algorithm will not replicate its choice of ω0. Note that in the ith update of V(i−1)

the Vb̂ib̂
T
i will modify only the ω− rows in V(i−1) since the rows of the Vb̂ib̂

T
i whose

indices are in ω0 contain only zero elements. Applying RCweb to the inflated matrices

avoids inferring multiple times the same b̂i, but a b̂i inferred from the inflated matrix

is generally going to differ at least slightly from the corresponding b̂i that solves (3.10)

for V. To avoid that, RCweb uses the inflated matrices only for the first few iterations

until the largest (by absolute magnitude) of the Pearson correlations between the smallest

eigenvector of Vω0 from the current (ith) iteration and the recovered columns of B is less

than 1 − ε and monotonically decreasing; ε is chosen for numerical stability and also to

reflect the similarity between the connectivity of R vertices that can be expected in the

network whose topology is being recovered. A simpler alternative that works great in

practice is to use the the inflated matrix for the first k iterations that are enough to find a

new direction for b̂i and thenRCweb switches back to V so that the solution is optimal for

V. The switch requires k rank update of K−1
ω0
≡ (VT

ω0
Vω0)

−1 and thus choosing k small

saves computations. Choosing k too small, however, may not be enough to guarantee that

b̂i will not recapitulate a solution that is already found. Usually k = 10 works great and

can be easily increased if the new solution is very close to an old one.

There are a few notable elements that make RCweb efficient. First, RCweb does

almost all computations in RP and since P � N , P < M , that saves both memory

and CPU time. Second, each step requires only a few matrix-vector multiplication for

computing the eigenvectors (since the change from the previous step is generally very

small) and K−1
ω0

is computed by a rank–one update which obviates matrix inversion.

The approach thatRCweb takes in solving (3.10) does not impose specific restrictions

on the distribution of the observed variables (G), the noise in the data (Υ) or the latent

variables R̂. However, the initial approximation of bi with vs can be poor for data aris-

ing from dense networks or special worst–case datasets. As demonstrated theoretically
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(Benaych-Georges 2009) and tested numerically in the next section, RCweb performs

very well at least in the absence of worst–case scenario special structures in the data.

3.6 Validation

To evaluate the performance of RCweb, I first apply it to data from simulated random

bipartite networks with two different topology types, (1) Erdös & Rènyi and (2) scale-

free whose corresponding degree distributions are (1) Poisson and (2) power–law. The

network topology is encoded in a weighted adjacency matrix Cgold and the values for the

unobserved variables are drawn from a standard uniform distribution. The simulations

result in data matrices G ∈ RM×N containing M observations of all N unobserved

variables. According toRCweb, the optimal sparse adjacency matrix (Ĉ) and the hidden

variables (R̂) can be inferred by the decomposition, Ĝ = R̂Ĉ so that Ĉ is as sparse as

possible while Ĝ is as close as possible to G.

In addition to RCweb, such decomposition can be computed by 3 classes of existing

algorithms. For a comparison, I use the latest versions for which the authors report best

performance: (A) PSMF for Bayesian matrix factorization as implemented by the author

MatLab function PSMF1 (Dueck et al, 2005); (B) BFRM 2 for Bayesian matrix factoriza-

tion as implemented by the author compiled executable (Carvalho and West, 2008); (C)

emPCA for maximum likelihood estimate (MLE) sparse PCA (Sigg and Buhmann, 2008);

(D) K-SVD (M. Aharon and and Bruckstein, 2005). All algorithms are implemented using

the code published by their authors, and with the default values of the parameters when

parameters are required. The results are compared for various M, N, P, sparsity, and noise

levels.
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3.6.1 Limitations

Before comparing the results, consider some of the limitations common to all algorithms

and the appropriate metrics for comparing the results. In the absence of any other in-

formation, the decomposition of G (no matter how accurate) cannot associate hidden

variables (corresponding to columns of R̂) to physical factors. Furthermore, all methods

can infer Ĉ and R̂ only up to an arbitrary diagonal scaling or permutation matrix. First

consider the scaling illustrated by the following transformation by a diagonal matrix D,

Ĝ = R̂Ĉ = R̂IĈ = R̂(DD−1)Ĉ = (R̂D)(D−1Ĉ) = R̂∗Ĉ∗. Such transformation

is going to rescale R̂ to R̂∗ and Ĉ to Ĉ∗, which is just as sparse as Ĉ, ‖Ĉ∗‖0 = ‖Ĉ‖0.

Since both decompositions explain the variance in G equally well RCweb (or any of the

other method) cannot distinguish between them. Thus given Ĉ, there is a diagonal matrix

D̂ that scales Ĉ to Cgold, the weighted adjacency matrix of G.

The second limitation is that in the absence of addition information, RCweb can

determine Ĉ and R up to a permutation matrix. Consider comparing Ĉ to the adjacency

matrix used in the simulations, Cgold. Since the identity of the inferred hidden variables

is not known the rows of Ĉ do not generally correspond to the rows of Cgold; Ĉi (the ith

row of Ĉ) is most likely to correspond to the Cgold row that is most correlated to Ĉi and

the Pearson correlation between the two rows quantifies the accuracy for the inference of

Ĉi. To implement this idea, all rows of Ĉ and Cgold are first normalized to mean zero and

unit variance resulting in Cnor and Cgold
nor . The correlation matrix then is, Σ = CT

norC
gold
nor

and the most likely vertex (index of the unobserved variable) corresponding to Ĉi is

k = arg maxj(|Σi1|, . . . , |Σij|, . . . , |ΣiP |), where k ∈ R. The absolute value is required

because the diagonal elements of D̂ can be negative. The accuracy is measured by the

corresponding Pearson correlation, ρi = |Σik|. An optimal solution of this matching

problem can be found by using belief propagation algorithm for the simple case of a
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bipartite graph even the LP relaxed version guarantees optimal solution (Sanghavi 2007).

The overall accuracy is quantified by the mean correlation ρ̄ = (1/p)
∑i=p

i=1 ρi where p

is the number of inferred unobserved variables and can equal to P or not depending on

whether the number of unobserved variables is known or not. In computing ρ̄, each row

of Cgold is allowed to correspond only to one row of Ĉ and vice versa.

In addition to the two common limitations of permutation and scaling, some algo-

rithms (d’Aspremont A, 2007) for sparse PCA require M > N and since this is not

the case in many real world problems and in some of the datasets simulated here, those

methods are not tested. Instead I chose emPCA, which does not require M > N and is

the latest MLE algorithm for sparse PCA that according to its authors is more efficient

than previous algorithms (Sigg and Buhmann, 2008).

3.6.2 Accuracy and Complexity Scaling

RCweb has a natural way for identifying the mean degree3. However, some of the other

algorithms require the mean degree for optimal performance. To avoid underestimating

an algorithm simply because it recovers networks that are too sparse or not sparse enough,

I assume that the mean degree is known and it is input to all algorithms. First all

algorithms are tested on a very easy inference problem, Fig.1. Since PSMF and BFRM

have lower accuracy and PSMF is significantly slower than the other algorithms, the rest

of the results will focus on the MLE algorithms that also have better performance. PSMF

gives less accurate results with power–law networks which can be understood in terms of

the uniform prior used by PSMF. PSMF has the advantage over the MLE algorithms in

inferring a probabilistic network structure rather than a single estimate. Special advantage

of BFRM is the seamless inclusion of response variables and measured factors in the

3When RCweb learns all edges, the smallest singular value of Vω0
approaches zero and its smallest

singular vector converges to b̂i.
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Figure 3.1: Accuracy of network recovery as a function of the number of unobserved variables, P . Number
of observed variables N = 500; Number of observations, M = 280. All networks are with Poisson mean
out–degree 0.10N = 50, with 10 % noise in the observations.

inference. For the MLE algorithms, the accuracy of network inference increases with the

ratio of observed to unobserved variables N/P (Fig.2) and with the number of observed

configurations M , Fig.3. In contrast, as the noise in the data and the mean out–degree

(mean number of edges fromR toN vertices) are increased, the accuracy of the inference

decreases. All algorithms perform better on Poisson networks and the lower level of

noise in the data from power–law networks was chosen to partially compensate for that.

An important caveat when comparing the results for different algorithms is that K-SVD

iteratively improves the accuracy of the solution, and thus the output is dependent on

the maximum number of iterations allowed (Imax). For the results here, Imax = 20 and

the accuracy of K-SVD may improve with higher number of iterations even though I did

not observe significant improvement with Imax = 100. Even at 20 iterations K-SVD

is significantly slower than RCweb and emPCA, Fig.4. The scaling of the algorithms
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Figure 3.2: Accuracy of network recovery as a function of the number of unobserved variables, P . The
thicker brighter lines with squares correspond to number of observed variables N = 500 and the dashed,
thinner lines correspond to N = 1000. In all cases the number of observations is M = 2000. A) Poisson
networks with mean out–degree 0.25N {125 and 250}, with 50 % noise in the observations and B) power–
law networks (with mean out–degree 0.40N {200 and 400}, with 10 % noise in the observations. C) The
same as (B) except for wider range of the observed variables.
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Figure 3.3: Accuracy of network recovery as a function of the number of observed configurations, M .
Continuous lines & squares, N = 500; dashed lines & circles, N = 1000 A) Poisson networks with mean
out–degree 0.20N {100 and 200}, with 50 % noise; B) power–law networks (with mean out–degree 0.40N
{200 and 400}, with 10 % noise. In all cases P = 30.

with respect to a parameter was determined by holding all other parameters constant and

regressing the log of the CPU time against the log of the variable parameter, Fig.4. The

scaling with respect to some parameters is below the theoretical expectation since the
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Figure 3.4: Computational efficiency as a function of P , M and N . The scaling exponents (slopes in
log–log space) are reported in the legends. The networks are with power–law degree distribution and 60 %
sparsity, with mean out–degree 0.40N

highest complexity steps may not be speed–limiting for the ranges of parameters used in

the simulations.

3.6.3 Interpretability

In analyzing real data the number of unobserved variables (P ) may not be known. I

observe that if a simulated network having P regulators is inferred assuming P ∗ > P

regulators, the elements of B corresponding to the excessive regulators are very close to

zero, |Bij| ≤ 10−10 for i > P or j > P . Thus, if the data truly originate from a sparse

networkRCweb can discard unnecessary unobserved variables.

The results of RCweb can be valuable even without identifying the physical factors

corresponding to xR. Yet identifying this correspondence, and thus overcoming the

limitations outlined in section 3.6.1 can be very desirable. One practically relevant

110



situation allowing in-depth interpretation of the results requires measuring (if only in

a few configurations) the states of some of the variables that are generally unobserved

(xR). This is relevant, for example, to situations in which measuring some variables is

much more expensive than others (such as protein modifications versus messenger RNA

concentrations) and some xs∈R can be observed only once or a few times. Assume that

the states of the kth physical factor are measured (data in vector uk) in nk number of

configurations, whose indices are in the set φk. This information can be enough for

determining the vertex xs∈R corresponding to the kth factor and the corresponding D̂ss

as follows: 1) Compute the Pearson correlations ~ρ between uk and the columns of R̂φk .

Then, the vertex of the inferred network most likely to correspond to the kth physical

factor is s = arg maxi(|ρ1|, . . . , |ρi|, . . . , |ρP |). 2) D̂ss = (R̂T
φk

R̂φk)−1R̂T
φk

uk. Similar to

section (3.6.1), weighted matching algorithms (Sanghavi 2007) can be used for finding

the optimal solution if there is data for multiple xs∈R.

Partial prior knowledge about the structure of G can also be used to enhance the in-

terpretability ofRCweb results. Assume, for example, that some of the nodes (xs∈αk⊂N )

regulated by the kth physical factor (which is a hidden variable in the inference) are

known. Then the matching approach that was just outlined can be used with Ĉ rather

than R̂. If the weights are not known all non-zero elements of Ĉαk
can be set to one.

The significance of the overlap (fraction of common edges) of the regulator most likely to

correspond to the kth physical and its known connectivity (coming from prior knowledge)

can be quantified by a p-val (the probability of observing such overlap by chance alone)

computed from the hyper–geometric distribution. This approach is exemplified with

gene-expression data in the next section.
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Conclusions

I introduce an approach (RCweb) for inferring latent (unobserved) factors explaining

the behavior of observed variables. RCweb aims at inferring a sparse bipartite graph in

which vertices connect inferred latent factors (e.g. regulators of mRNA transcription

and degradation) to observed variables (e.g. target mRNAs). The salient difference

distinguishing RCweb from prior related work is a new approach to attaining sparse

solution that allows the natural inclusion of a generative model, relaxation of assumptions

on distributions, and ultimately results in more accurate and computationally efficient

inference compared to competing algorithms for sparse data decomposition.
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3.7 Application to the Growth Rate Response Data

Simulated models have the advantage of having known topology, and thus providing

excellent basis for rigorous evaluation. Yet the real opportunities to the application of

RCweb are on real data where RCweb has the potential to transcend the descriptive

macroscopic level of analysis (Slavov and Dawson, 2009). For real biological networks,

however, such rigorous evaluation is only possible based on experimental testing. RCweb

results in quantitative models that can be tested in a variety of different ways including

predicted network structure, TF activities, dynamical responses of mRNA levels from

perturbations and transcriptional effects of deleting and overexpressing genes. RCweb

was conceived and designed to be used in conjunction with experimental testing of the

results.

Since I have not had the opportunity to experimentally test the RCweb predictions, I

will confine this section to a very short evaluation of the results based on the existing

partial knowledge of transcriptional networks. In particular, I will use the approach

outlined in section 3.6.3 for partially evaluating inference results from the growth rate

data. I consider such evaluation preliminary and insufficient to demonstrate the power of

RCweb.

I start by normalizing the growth rate response data for all 45 datasets on ethanol

and glucose carbon source to z–scores so that the vector of expression levels for each

gene has a mean zero and a unit variance. RCweb was initialized with P ∗ = 24 unob-

served variables (corresponding to regulators of mRNA levels) and identified P = 22 co-

regulated sets of genes in less than 3 seconds compared to several hours needed by FIRE.

To evaluate whether some of those regulators correspond to known transcription factors,

the inferred adjacency matrix Ĉ is compared directly to the adjacency matrix identified by

ChIP-chip experiments and published by MacIsaac et al (2006) using weighted–matching
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that resulted in an optimal solution. From sets of genes inferred by RCweb to be co-

regulated, 13 sets overlap significantly with sets of genes found to be regulated by TFs

in ChIP-chip studies with the largest p value for those 13 sets being 2.3 × 10−8 and the

smallest below the numerical precision of my computations. The inferred activities of

those TF are shown in Fig.3.5:
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Figure 3.5: Activities of TFs Inferred byRCweb. Since the scale is arbitrary, all activities where normalized
to z–scores. The first 9 columns correspond to 3 limitations (Ethanol (E), Nitrogen (N), Phosphor (P)) and
each limitation has 3 growth rates ordered from slowest to fastest growth µ = {0.05, 0.10, 0.14}h−1,
for ethanol carbon source and the remaining 36 correspond to 6 limitations (Glucose (G), Nitrogen (N),
Phosphor (P), Sulfur (S), Leucine (L) and Uracil (U)) and each limitation has 6 growth rates ordered from
slowest to fastest growth µ = {0.05, 0.10, 0.15, 0.20, 0.25, 0.30}h−1, for glucose carbon source. The
results are subjects to the limitations discussed in section 3.6.1.

Many of the results on Fig.3.5 are consistent with biological expectations. For ex-

ample, HAP4 is much more active in ethanol carbon source than in glucose carbon

source where it is active only in the slowest growth rates. Furthermore, HAP4 has

positive growth rate response in ethanol carbon source and negative growth rate response

in glucose, again consistent with the different oxidative demands of cells growing on

ethanol and glucose. Similar pattern of activities are inferred for SWI5 and GCN4. Not
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surprisingly, many of the inferred TF activities show strong growth rate dependence

which is easiest to understand in the case of RAP1 increasing in activity with growth rate

for all limitations on glucose carbon source. The growth rate induction of the ribosomal

genes in ethanol carbon source seems to be regulated primarily by FHL1 whose activity

is both higher and having positive growth rate slopes in ethanol carbon source.

The results from the RCweb inference are not limited to TF activity but also include

identified potential regulators of mRNA degradation, new TF targets, patterns of combi-

natorial regulation and a model that can predict gene expression changes resulting from

perturbations of regulators. I will not discuss those, however, before I am able to evaluate

them rigorously.
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Chapter 4

Growth Rate Response, YMC and Cell

Cycle

4.1 Introduction

Brauer et al (2008) made the qualitative observation that genes expressed during different

phases of the yeast metabolic cycle (YMC) (Klevecz et al, 2004; Tu et al, 2005) have

growth rate response slopes (on glucose carbon source) that tend to be either positive or

negative. In particular, genes expressed during the oxidative phases have positive slopes

while genes expressed during reductive phases have negative slopes (Brauer et al, 2008).

Much of the work outlined in this chapter is under development and the summary here is

a succinct survey of recent progress rather than an exhaustive description of completed

work.

The second section of this chapter focuses on demonstrating the existence of the YMC

in single cells from non–synchronized populations and methods to analyze the data and

maximize the extracted information while minimizing assumptions. In particular, I focus
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on the mathematical problem of inferring high dimensional dynamical trajectories (the

expected mRNA counts for all measured genes) from low–dimensional (just a few genes

per experiment) time disordered observations (cells whose phases in the metabolic cycle

are not known).

The third section of this chapter builds upon the qualitative observation by Brauer et al

(2008) in developing a quantitative model of growth rate response based on the YMC. Fur-

thermore, I show that model predictions are consistent with experimental measurements

in synchronized cultures and discuss how the model can be used to propose and test the

mechanistic connection between the growth rate response, the YMC and the cell cycle.

4.2 YMC in Single Cells

4.2.1 Correspondence between Correlations

The correspondence between gene–gene correlations in continuous yeast populations

synchronized with respect to the YMC and in single cells from non–synchronized popula-

tions is evidence for the existence of the YMC even in non–synchronized cells (Silverman

et al, 2010; Slavov et al, 2012, 2013). The image processing and statistical treatment

which enabled this work is available (upon request) as a draft manuscript. Here I will

present just the “tip of the iceberg” summary: A scatter plot depicting the correspondence

of gene–gene correlations in synchronized populations and in single cells based on the

data from the most recent versions of my image processing algorithms, Fig.4.1. Since the

Poisson distribution is not symmetric (skewed to the right), uncorrelated Poisson noise

can introduce systematic bias in the estimates of correlations. To minimize such a bias I

used two approaches:
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R = 0.93 pval < 10−6

R = 0.56 pval < 10−2

R∗ = 0.82 pval < 10−3

OM45−

µ = 0.1h−1 pval < 10−4

µ = 0.1h−1 pval > 10−4

µ = 0.2h−1 pval < 10−4

µ = 0.2h−1 pval > 10−4

Figure 4.1: Correspondence between gene–gene correlations in continuous yeast populations synchronized
with respect to the YMC (Tu et al, 2005) and in single cells from non–synchronized populations at growth
rates µ = 0.10h−1 and µ = 0.20h−1. The significance of the correlations computed from the single
cell data is reflected in the color and size of the markers. As an overall measure of the correspondence, I
compute the correlation of correlations R using all significant (p < 10−4) correlations and in the case of
µ = 0.20h−1, I also compute R∗ which excludes correlations including OM45 since they are all obvious
outliers.

1. The correlations in single cells were computed using only cells that have at least

one mRNA.

2. The correlations in single cells were computed using only cells in YMC phases in

which the mRNAs are expressed. To select such a subset of cells, I use a Poisson

mixture model. In this model the observed cells may come from two Poisson

distributions. To estimate the parameters of those distributions and assign cells to

them, I use an expectation maximization (EM) approach described in the Appendix

section 5.5.

On Fig.4.1, I display the results only from the first approach (excluding cells with no

mRNAs) because they are very similar to the results from using the Poisson mixture

model and are simpler to explain and understand.
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4.3 YMC, Cell Cycle and Growth Rate Response

4.3.1 Non–synchronized Cultures

4.3.2 Introduction

Consider an non–synchronized population of yeast (or another microorganism) growing

exponentially in a chemostat at a growth rate µ. After about 10 generations in the

chemostat, measurements of biomass, bud index, and residual nutrients stop changing,

which can be interpreted as a sign of steady–state. The individual cells, however, are not

at steady–state. Based on the classical work by Hartwell (1974); Hartwell et al (1974)

and more recent work by Silverman et al (2010), we know that individual cells go through

cell cycles as well as yeast metabolic cycles (YMC) in the case of yeast. Therefore, the

expression level of the ith gene measured in a population (Ĝi) depends on the expression

levels of the ith gene during each phase of the cycles and on the fraction of cells in each

phase of the cycles. Furthermore, if we assume that the population is non–synchronized

with respect to the cycles, the number of cells in a phase is proportional to the duration

of that phase. These dependencies can be used to derive a quantitative expression (4.1)

for the level of the ith gene measured in a non–synchronized population (Ĝi):

Ĝi =
1

T

∫ t=T

t=0

G(t)dt ≈ 1∑
j∈ω Tj

∑
j∈ω

TjGij (4.1)

In the time continuous regime, Ĝi is the integral of expression levels during a cycle

period divided by the duration of a cycle period. In the time discrete regime, Ĝi is the

superposition (over the set of all phases ω) of expression levels during each phase (Gij)

weighted by the phase durations (Tj).

119



Given (4.1), one would expect that changes in the phase duration will affect the gene

expression levels measured in non–synchronized populations. I will examine briefly the

expectations for such changes starting with the cell cycle since 1) the budding index data

from section 1.4.2 gives me direct measurement of the fraction of time cells spend in

G0/G1 verses S/G2/M phases, and thus I can compare the expectation based on (4.1) to

the gene expression data; 2) The cell–cycle has been known for half a century, its better

studied than the YMC and its existence has been verified by many researchers in many

different systems.

4.3.3 Cell–Cycle

I am going to use the budding index as and indicator of the fraction of cell in different

phases of the cell cycle. In particular, the fraction of budded cells equals the ratio of time

cells spend in S/G2/M verses G0/G1 phases. Based on that, I will estimate an expectation

for the slopes of S/G2/M genes in the data by Brauer et al (2008) as follows:

1. At the slowest growth rate µ = 0.05h−1, the ratio of duration of S/G2/M verses

G0/G1 phases is:

µ = 0.05h−1 7→ (TS + TG2 + TM)︸ ︷︷ ︸
budded

/ TG1︸︷︷︸
non−budded

= 0.18

2. At the fastest growth rate µ = 0.30h−1, the ratio of duration of S/G2/M verses

G0/G1 phases is:

µ = 0.30h−1 7→ (TS + TG2 + TM)︸ ︷︷ ︸
budded

/ TG1︸︷︷︸
non−budded

= 0.80

3. If cell cycle genes specific to a phase of the cell–cycle are expressed only during

that phase and their expression is regulated entirely by the cell–cycle the expected

slopes for S/G2/M genes should be distributed around:

E[Slope] = log2(0.8/0.18)/(0.3− 0.05) = 9
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This expectation is inconsistent with the gene expression data in which cell cycle genes

have slopes centered around zero (Brauer et al, 2008). This inconsistency indicates

that the assumption at step (3) about cell–cycle genes being regulated only by the cell

cycle is incorrect. In fact, FISH images with labeled cell–cycle genes demonstrate that

indeed non–budded cells express cell–cycle genes. Furthermore, FISH data and cultures

synchronized with respect to the YMC at different growth rates suggest that the YMC

may counterbalance the effect of the cell–cycle. Before examining this possibility in

more detail in the next subsection, consider the same type of slope estimate for cultures

growing only on ethanol carbon source:

1. µ = 0.05h−1 7→ (TS + TG2 + TM)/TG1 = 0.15

2. µ = 0.14h−1 7→ (TS + TG2 + TM)/TG1 = 0.28

3. E[Slope] for S/G2/M log2(0.28/0.15)/(0.14− 0.05) = 10

The slopes for cell-cycle genes computed from the gene expression data are negative

indicating even larger differences between the expected and the measured trends in the

growth rate response of cell–cycle genes.

4.3.4 YMC

There are many ways to study experimentally whether and how the YMC changes with

growth rate, including the reconstruction of dynamical trajectories discussed in section

??. I first consider the growth rate effect in a YMC synchronized population as measured

directly by the level of dissolved oxygen, d[O2]. The raw data for a glucose limited

culture grown at µ = 0.10h−1 and µ = 0.05h−1 are shown on Fig.4.2. It is hard to

estimate the change in shape of the oscillation and the duration of the different phases

from Fig.4.2. To facilitate that, I scale the duration of one cycle for µ = 0.10h−1 so
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Figure 4.2: Changes in the YMC with growth rate. A culture synchronized at µ = 0.10h−1 was shifted to
µ = 0.05h−1.

that it is equal to the duration of one cycle at µ = 0.05h−1 and plot 3 cycles for each

growth rate one above the other, Fig.4.3. The traces in Fig.4.3 indicate that at the faster

growth rate, µ = 0.10h−1, the relative duration of the oxidative phase is longer compared

to the slower growth rate µ = 0.05h−1. To quantify this difference, I divide the first

cycle into two parts at mid–height into an oxidative phase (high oxygen consumption)

and at mid–height into a reductive (low oxygen consumption) phase. The ratio between

the duration of the oxidative phase to the duration of the reductive phase is denoted by

R. For µ = 0.10h−1 (doubling time 7h) the ratio is denoted by R7h and for µ = 0.05h−1

(doubling time 14h) the ratio is denoted by R14h. Remarkably, R7h = 2R14h indicating

that the duration of the oxidative phase is proportional to the growth rate and based on

these data the coefficient of proportionality is 1.0.

Fig.4.4 shows data from additional experiments with metabolically synchronized cul-

tures of a WT S288C HAP1+ strain supporting the conclusion that the relative duration
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Figure 4.3: Changes in the YMC with growth rate in metabolically synchronized cultures of a haploid
MATa WT S288C HAP1+ strain. Three cycles from the data on Fig.4.2 are shown for both µ = 0.10h−1

and µ = 0.05h−1. The period of the µ = 0.10h−1 cycle was scaled to be the same as the period of the
µ = 0.05h−1. The ratio between the duration of the oxidative phase (high oxygen consumption) to the
reductive (low oxygen consumption) phases is denoted by R. For µ = 0.10h−1 (doubling time 7h) the
ratio is denoted by R7h and for µ = 0.05h−1 (doubling time 14h) the ratio is denoted by R14h.

of the high oxygen consuming YMC phase increases with the growth rate and expanding

the dynamical ranges of growth rates.

Scaling the duration of the metabolic cycle is useful in emphasizing growth rate in-

duced changes in the relative durations of its phases but it does not reveal another impor-

tant parameter: the YMC period. Fig.4.5 shows how the period of the YMC changes with

growth rate and the period of the cell–cycle:

Phenomenologically, the results on Fig.4.5A reconcile and explain the differences

in YMC frequencies reported by Klevecz et al (2004) and by Tu et al (2005). More

interestingly, the linear dependence between the periods of the YMC and the cell–cycle is

reminiscent to the observation made first by Hartwell (1974); Hartwell et al (1974) that

as cells grow slower (and thus increase the duration of their cell–cycle periods), the extra
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Figure 4.5: The period of the YMC as a function of growth rate µ (A) and the cell–cycle period (B) in
metabolically synchronized cultures of a diploid WT S288C HAP1+

time is spent in G0/G1 stage. In the case of the YMC, the increase in the reductive (low–

oxygen consumption) stage with the increase in the cell cycle period is likely to be due

entirely to increase in the YMC phase with high expression of autophagy genes while the

durations of the oxidative and the DNA replication phases of the YMC remain constant.
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Given that the relative durations of the YMC change with growth rate, equation (4.1)

predicts that the gene expression levels measured in non–synchronized populations should

be growth rate dependent for genes expressed periodically during the YMC. Indeed,

Fig.4.6 shows that all genes with universal growth rate response are expressed period-

ically during the YMC. Furthermore, Fig.4.6 indicates that genes expressed at higher
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Figure 4.6: GRR Genes are Periodic in the YMC. The left panel depicts mean centered expression levels
of GRR genes. Expression levels of the genes with best fits to my GRR model are normalized to mean
zero for each limitation and clustered. The first 9 columns correspond to ethanol carbon source and
limitations on ethanol, nitrogen and phosphor, 3 growth rates per limitation arranged in ascending order,
µ = {0.05, 0.10, 0.14}h−1. The next columns correspond to glucose carbon source and limitations
on glucose, nitrogen, phosphor, sulfur, uracil and leucine, 6 growth rates per limitation arranged in
ascending order µ = {0.05, 0.10, 0.15, 0.20, 0.25, 0.30}h−1. The right panel depicts the expression levels
(normalized to z–scores) of the same genes in the YMC (Tu et al, 2005). The genes in both panels are
clustered based on their expression levels in the growth rate experiments and thus genes (rows) from the
left panel correspond to the genes (rows) in the right panel. The over–represented GO terms for the genes
with positive and negative slopes can be found in tables 2.2 and 2.1 respectively.

levels during the oxidative phases have positive slopes (expressed more highly at the

higher growth rates) while genes expressed at higher levels during the reductive phases

have negative slopes (expressed more highly at the slower growth rates) as expected from

the data on Fig.4.3 and equation (4.1). There are no exceptions. All genes with universal

growth rate response are periodic in the YMC and have the predicted growth rate response.

Interestingly, the most overexpressed genes in cultures starving in glucose are all genes

expressed during the reductive phase further suggesting a connection between the rate f

growth (or lack of growth th this case) and the YMC.
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I use equation (4.1) to build a simple model based on this remarkable correlation

between the YMC and the universal growth rate response. The model uses the gene ex-

pression data measured by Tu et al (2005) in matrix Ω ∈ R1500×12 whose rows correspond

to the 1500 genes with universal growth rate response and the columns correspond to the

12 time points in the YMC measured by Tu et al (2005). Each time point is the arithmetic

average from the three cycles that Tu et al (2005) measured. I also use data from my

ethanol carbon source experiments and from Brauer et al (2008) in a matrix Φ ∈ R1500×45

whose rows correspond to the 1500 genes with universal growth rate response and the

columns correspond to the 45 growth rate conditions, 9 on ethanol carbon source and 36

on glucose carbon source. Applied to these data, the matrix form of equation (4.1) is

simply:

ΩC = Φ (4.2)

Here C ∈ R12×45 is a matrix whose elements indicate the relative durations (fractions of

the period of of the YMC) of the YMC sections corresponding to the 12 time points for all

45 cultures limited on different nutrients and growing at different growth rates. Assuming

Gaussian distribution for the measurement errors, the maximum likelihood (ML) solution

of this overdetermined problem (4.2) is:

Ĉ = (ΩTΩ)−1ΩTΦ (4.3)

In the ML solution, some elements of Ĉ are negative which has no physical meaning and

may result from factors ranging from the trivial (high degree of co–linearity in the gene

expression data) to more substantive reasons such as the growth rate response being a

function not only of the YMC but also being regulated by other mechanisms. To avoid

negative elements in Ĉ, I add the constraint Cij > 0 and solve the resulting quadratic

programming (LP) problem with a interior point method.
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Similarly, one can build a model for cell–cycle genes and use the inference results to

identify similarities and differences in the YMC in different nutrient limitations as well

as the coupling between the YMC and the cell–cycle. The results can be compared to

and evaluated with respect to the results from inferring dynamical trajectories from FISH

data. Since the two approaches use different data and are orthogonal in many ways, they

complement each other well. This is work in progress. I have both encouraging results

and unresolved challenges.

4.3.5 YMC and Cell Cycle

The discrepancy between expected and observed slopes for the cell cycle genes can be

resolved when the YMC is taken in into account. Indeed, Tu et al (2005) showed that cell–

cycle genes are expressed during the reductive phases of the YMC whose relative duration

is inversely proportional to the growth rate, Fig.4.3. Thus a correct expectation based on

(4.1) should incorporate the YMC as well. Qualitatively, it is clear that the effects of the

cell–cycle and the YMC are going to counterbalance each other since the durations of

their phases with high expression of cell–cycle genes change in the opposite direction

with growth rate. The exact quantitative resolution likely to come from applying emDyn

and (4.1) is in progress.

4.3.6 Respiration in Cultures not Limited on Glucose

One of the interesting observation by Brauer et al (2008) is that cultures limited on

natural nutrients do not ferment excess glucose. This observation might be related to

the existence of an intrinsic YMC in non–synchronized cells limited on natural nutrients

such as phosphate, (Silverman et al, 2010). Indeed, cells undergoing the YMC do not

waste glucose and do not generate ethanol during most of phases of the YMC as shown
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by Tu et al (2005) and confirmed by my measurements of residual glucose and ethanol in

YMC synchronized cultures. A testable prediction of this supposition is that cultures not

limited on any nutrients do not have an intrinsic YMC. To test this predictions, we use the

method applied by Silverman et al (2010) to measure single cell gene–gene correlations

in yeast cultures growing in excess nutrients in early phase batch cultures.
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4.3.7 Metabolically Synchronized Cultures

There are many open questions regarding the exact mechanisms of YMC synchronization

of yeast populations and the relationship between the YMC in such populations and the

YMC in single cells (Silverman et al, 2010). Klevecz et al (2004) and Tu et al (2005)

have demonstrated experimentally a relationship between the cell–cycle and the YMC but

the exact nature and significance of the connection has not been established. The working

hypothesis is that DNA replication is limited to the reductive phases of the YMC to limit

DNA damage, (Tu et al, 2005; Klevecz et al, 2004). In this section, I present experimental

data from YMC synchronized populations that are consistent with the possibility that

the YMC observed in populations is emergent behavior from the coupling of the cell–

cycle and the intrinsic YMC. Those two non–linear oscillators can be by a simple Duffing

oscillator which exhibits the wide range of possible dynamical behaviors observed in

YMC synchronized populations and some of which I outline below.

My attempts to metabolically synchronize chemostat cultures have significantly higher

success rate with the WT CEN.PK strain compared to the haploid WT S288C HAP1+

strain. All results reported in this subsection are for the haploid WT S288C HAP1+ strain.

I have been able to metabolically synchronize the haploid S288C only at growth rates µ =

{0.10, 0.05}h−1 in which the period of the cell–cycle is equal to integer multiple of the

period of the YMC observed in the population. Attempting to synchronize a population at

a growth rate µ = 0.12h−1, which is slightly higher than the growth rate at which the YMC

oscillations are stable (µ = 0.10h−1), results in initial synchrony that is gradually lost,

Fig.4.7. In contrast, I have been able to metabolically synchronize the diploid S288C at

faster growth rates. Even more interesting is the result when a population synchronized

at µ = 0.10h−1 is shifted to a higher growth rate µ = 0.20h−1, Fig.4.8. The simple

periodic waveform of the oxygen trace p[O2] becomes rather complex at µ = 0.20h−1
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Figure 4.7: YMC at µ = 0.12h−1
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Figure 4.8: Growth Rate Transitions in the YMC. A population synchronized at µ = 0.10h−1 is shifted to
a higher growth rate µ = 0.20h−1 and then back to µ = 0.10h−1

and recovers back to simple periodic waveform as soon as the growth rate is restored

back to µ = 0.10h−1. To identify if the complex waveform at µ = 0.20h−1 has similar
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frequencies to the frequencies found in the periodic waveform I perform discrete cosine

transform of the time series data, Fig.4.9. While the general shapes of the harmonics are
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Figure 4.9: Power Spectra of the YMC. The left panel displays the power spectrum for µ = 0.10h−1 and
the right panel displays the power spectrum for µ = 0.20h−1 for the oxygen traces shown in Fig.4.8

different for µ = 0.10h−1 and µ = 0.20h−1, they are related by an integer scaler of 2.

Interestingly, the power spectra of the complex waveforms on glucose and ethanol

carbon source look very similar and differ only by a scaler multiple of the harmonic

frequencies, Fig.4.10.
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Figure 4.10: Power Spectra in Glucose and in Ethanol. The left panel displays the power spectrum for a
complex waveform in glucose carbon source µ = 0.10h−1 and the right panel displays the power spectrum
for a complex waveform in ethanol carbon source µ = 0.10h−1.

Key observations suggesting the emergent nature of the YMC in metabolically syn-

chronized cultures include:

• Some of the differences between d[O2] waveforms in metabolically synchronized

populations can be traced to a single parameter that has the expected effect. For
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example, the amplitude of the oscillations depends strongly on the rate of air flow,

Fig.5.7. Other differences, however, such as the dependence of the frequency and

shape of the waveform on the nutrient composition of the media and biomass

density of the population are harder to explain. A possible explanation is that

changes in nutrients and biomass affect the strength of coupling between the YMC

and the cell–cycle, which then affects the emergent synchrony of the population

reflected in the measured d[O2].

• In some ranges of parameters, variation of biomass density and growth rate changes

qualitatively the culture dynamics from regular periodic oscillations (limit ycle)

through bursting to dynamics that appear chaotic.

• Spontaneous transitions between different d[O2] waveforms in metabolically syn-

chronized CEN.PK.

• The marginal and joint distributions of mRNAs derived from FISH data from syn-

chronized populations indicate that only a subset of the population is synchronized,

Fig.5.8
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Chapter 5

Appendix

5.1 Clustering using TSP

Despite the fact that clustering has been long–term preoccupation of the bioinformatics

community, none of the numerous clustering algorithms for gene expression data that

I am ware of guarantees finding the permutation of genes that minimizes the distance

(computed by some metric of similarity) between all neighboring genes in a cluster. The

fundamental problem is that finding such optimal permutation is an NP–hard problem

and most of the heuristics used for gene-expression data (such as the many versions

of hierarchical clustering) can result in rather suboptimal solutions. Those suboptimal

solutions can contain many mistakes ranging from switching the order of large clusters

to misplacing genes in clusters whose expression profiles are utterly different from the

expression profiles of the genes.

In addition to the bioinformaticians, applied mathematicians have worked on a math-

ematical problem whose optimal solution is exactly the optimal permutation resulting in

the best hierarchical clustering possible given the data and the chosen similarity metric.
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This mathematical problem is known as the traveling salesman problem (TSP) and is

one of the best studied problem in complexity theory. While no algorithm for solving

the TSP can guarantee a polynomial time solution for all problems, there are algorithms

(such as Concorde) that practically scale very well and can solve virtually any medium

size (thousands and even tens of thousands of visited cities which for us are usually

genes, metabolites or time points) problem to mathematically proven optimality within

a few minutes of CPU time, (Hoos and Stutzle, 2009; Applegate et al, 2007b). Such

algorithms have enabled, albeit more difficult, solving even large scale problems up to

85,900 cities Applegate et al (2007a) and much progress has been made in developing

powerful algorithms during the last half century, Fig.5.1.

Figure 5.1: TSP Progress, figure from Applegate et al (2007b)
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Optimality proof

A complete description of the methods used for proving optimality of TSP solutions is

beyond the scope of this thesis and can be found at (Applegate et al, 2007b). Below, I

briefly outline one of the most successful and common approaches.

Once an optimal solution is found, its optimality can be proven even though the

exhaustive enumeration of all possible solutions is impractical and will take many years

for any super computer. The proof is often based on demonstrating equivalence between

the hard combinatorial integer problem (IP) that we want to solve and its dial linear

programming (LP) relaxed problem that is much easier to solve (Hoos and Stutzle, 2009;

Applegate et al, 2007b). The TSP can be restated in graph theory terminology so that each

city is a node (vertex) and each traveled distance is a link (edge) of a graph. Then finding

the optimal path is a hard combinatorial optimization integer problem (IP) in which each

edge either exists or not, and thus takes two possible discrete values, 0 or 1. However, the

IP has a dual linear programming (LP) relaxation in which the vertex may belong to the

interval [01]. In general, LP will not give an integer solution. When it does, however, then

the LP solution is the optimal IP solution as the constraint set is strictly larger for LP, and

includes all solutions for IP. Then the general procedure is to apply a family of tighter

and tighter LP relaxations (e.g. by cutting plane methods) where non-integer solutions

are iteratively eliminated until an integer solution is found. Once an integer solution is

found, it is the optimal one. Alternatively the LP duality can be used to compute a lower

bound and when the solution coincides with it, the solution is optimal.
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5.2 Slopes/Exponents

Differences in slope distributions

Before considering the slopes of individual genes and sets of genes, I consider global

characteristics (summary statistics) of the distributions of slopes for different limitations

and discuss what might be the biological reasons for those characteristics. I start with the

simplest summary statistics, the mean (first moment) and the variance (second centered

moment). Then I compute the correlations between slopes (averaging across all genes) to

quantify magnitude of global nutrient and carbon source effects. Furthermore, I address

the question which is the relevant way of comparing slopes in glucose and ethanol carbon

sources given the different ranges of growth rate possible in ethanol and in glucose carbon

sources.

Carbon Source Limitation

Carbon Nitrogen Phosphor

Ethanol 0.12 -0.12 0.12

Glucose -0.10 -0.20 -0.19

Table 5.1: Arithmetic averages (means) for the slope across

nutrient limitations and carbon sources

The mean slopes for all genes

(Table 5.1) are very close to

zero for all limitations. For

both ethanol and glucose carbon

source, the nitrogen limitation

has the most negative means but

in general the differences are very

modest.

Much more interesting is the variation across limitations in the variance of the slope

distributions, Fig.5.2. In all cases (as expected), using 3 growth rates to compute the

slopes results in lower variances compared to using 6 growth rates. The interesting obser-

vation is that the nitrogen limitations have significantly higher variance for both ethanol

and glucose no matter how many growth rates are used in computing the slopes. The
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Figure 5.2: Slope variance for ethanol and glucose carbon source (CS). The numbers in the legend indicate
the numbers of growth rates used in computing the slopes: 3 7→ µ = {0.05, 0.10, 0.14/0.15}h−1, 6 7→
µ = {0.05, 0.10, 0.15, 0.20, 0.25, 0.30}h−1

magnitude of the variance reflects (approximately) the magnitude of the response per unit

change in growth rate. Thus, cultures limited on nitrogen have large growth rate response

in mRNA levels compared to other limitations. This effect is particularly strong for the

first 3 growth rates in glucose carbon source, Fig.5.2. Using the same logic and comparing

the variance in slopes for the slowest 3 growth rates µ = {0.05, 0.10, 0.14/0.15} in

ethanol and glucose, I conclude that the mRNA growth rate response is stronger in ethanol

compared to glucose.

Even more interesting and informative is the Pearson correlation between slopes (again

computed by averaging across all genes), Fig.5.3. First, consider the slopes computed

from all 6 growth rates (µ = {0.05, 0.10, 0.15, 0.20, 0.25, 0.30}h−1) in glucose and the 3

growth rates µ = {0.05, 0.10, 0.14}h−1 in ethanol, Panel (A). Two obvious trends from

panel (A) are that all correlations are positive (indicating some universal growth rate

response) and that carbon source has a major effect of the growth rate response. Another
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Figure 5.3: Pearson correlations between slopes for ethanol and glucose carbon source (CS). The data for
ethanol is the same in both panels. For glucose, in panel (A) the slopes are computed from all 6 growth
rates µ = {0.05, 0.10, 0.15, 0.20, 0.25, 0.30}h−1 while in panel (B) only the slower 3 growth rates were
used µ = {0.05, 0.10, 0.15}h−1

salient observation is that the nitrogen limitation onces again stands out as having the

most similar growth rate response. The limitations on phosphor are also more similar

to each other indicating a slight PO3−
4 growth rate effect. If only the lowest 3 growth

rates (µ = {0.05, 0.10, 0.15}h−1) on glucose (panel B) are used in computing the slopes,

similarity between growth rate response is significantly lower as indicated by less positive

correlations, Fig.5.3B.

Comparing the Euclidean distances between the slopes vectors (Slope in Carbon,

Slope in Nitrogen, Slope in Phosphor) of each gene is another way to further verify and

reinforce the conclusion that slopes in ethanol are more similar to slopes glucose when

on all 6 growth rates, Fig.5.4.
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Figure 5.4: Euclidean distances between the slopes vectors for ethanol and glucose carbon source (CS).
The data for ethanol is the same in both panels. For glucose, in panel (A) the slopes are computed from
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5.3 Representation of non–linear functions forRCweb

The concentration of the jth mRNA (Gj) is a function (Fj) of its Qj regulators, ~x ≡

(x1, ..., xQj
) ≡ {xk}, k ∈ qj , which are the active post-translationally modified proteins,

RNAs and small molecules (ligands) that control the production (transcription) and the

degradation of the Gj . The jth expression function (Fj) has an exact expansion in terms

of hierarchal component functions (r) and (c), the corresponding weighted superposition

coefficients:

[Gj] = Fj(~x) ≡
∑
m∈qj

cmrm(xm) +

∑
m,n∈qj

cmnrmn(xm, xn) + . . .+

cr1,...,Qj
(x1, ..., xQj

) (5.1)

The component functions may not have closed forms and we do not know their explicit

forms. In this most general case, we only assume that the expression of genes that have

common regulators interacting with each other in the same manner can be expanded in

terms of the same or very similar component functions. Then, we can treat the component

functions as hidden (unobserved) variables and infer their numerical values form the data

along with the most parsimonious combination (superposition) of such functions that can

explain the measured (observed) expression of all genes.

Mathematically, we formulate a model (analogously to equations 4-6) so that the

concentration of the jth mRNA across all i conditions (Gij) is a superposition of only

a few component functions rk, k ∈ ωj; here ωj is a small subset of the Ω, the set

of all P significant component functions, r1, r2, . . . , rP , and {rp}, p ∈ Ω from the

expansions of the expression functions of all genes. We define matrix R ∈ RM×P

so that its columns are the full set of significant component functions and the ith row
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contains their corresponding numerical values for the ith physiological conditions. The

superposition of rk corresponding to the expression function of the jth gene (Fj) is

encoded in a coupling vector cj ∈ RP×1. Each element in cj represents the coupling

of the jth gene to the corresponding component function. The coupling vectors form the

columns of the adjacency matrix C ∈ RP×N containing the couplings of all N genes to

the component functions.
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5.4 Supplementary Figures

5.4.1 GO term trees for the genes with universal GRR
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Figure 5.5: GO Term Tree for Genes with Negative Slopes. The color of each box reflects the the
probability for seeing the observed overrepresentation by chance alone, as follows: Orange ≤ 10−10,
Yellow {10−1010−8}, Green {10−810−6}, Cyan {10−610−4}, Blue {10−410−2} and Beige > 10−1.
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Figure 5.6: GO Term Tree for Genes with Negative Slopes. Notation the same as in Fig.5.5
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Figure 5.7: Effect of Air Flow on YMC Synchronization. Two culture of S288C started from the same
colony, feeding from the same glucose limited media and growing at a dilution rate µ = 0.10h−1. The
only difference is the rate of air flow.
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Figure 5.8: Marginal and Join Distributions of mRNAs in YMC Synchronized Cultures
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Figure 5.9: Marginal and Join Distributions of mRNAs in YMC Synchronized Cultures
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Figure 5.10: Marginal and Join Distributions of mRNAs in YMC Synchronized Cultures
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5.5 Computing Correlations in FISH data

Pearson correlations between mRNAs computed by averaging across all observed cells

is one type of summary statistic describing the data. Such correlations, however, do not

capture all information from the joint distribution. The discrete nature of the count data

and the presence of multiple sub-distributions can further limit and distort the information

captured by the Pearson correlations.

Of particular concern is systematic positive bias that may be introduced by uncor-

related Poisson noise. Indeed such Poisson noise is very likely to exist in the mRNA

counts for every pair of genes expressed at very low levels (or not expressed at all) during

some phases of the YMC. During such YMC phases, the expected number of mRNAs for

those genes may be zero but the observed number of mRNAs will not be necessarily zero

for all cells; the stochastic nature of transcription and mRNA degradation implies that the

observed number of mRNAs will follow a Poisson distribution with very low expectation.

Since the Poisson distribution is asymmetric, such uncorrelated Poisson noise with low

expectations may introduce rather strong positive bias in the estimates of the gene-gene

correlations. Indeed, we observe such bias in simulated models, see supp info. That is

also the reason why the ranges (min and max) of the Pearson correlations are so skewed.

Since the noise is not correlated (and does not need to be correlated to introduce the bias)

permutation are not likely to affect it.

To minimize systematic bias from Poisson noise (which unlike Gaussian noise cannot

be eliminated simply by averaging many observations), we aim to compute the gene-gene

correlations using only cells in which the genes are expressed systematically. To separate

such cells from cell in which mRNAs are observed because of stochastic events, we sepa-

rate all cells between two bivariate Poisson distributions. This separation is accomplished

in a principled and systematic way using a mixture model (see supp info) and then the
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correlation is computed using only cells from the systematic Poisson distribution having

higher expectations for both genes.

To compute a gene-gene correlation using only cells from the YMC phases when the

two genes are highly expressed (the systematic component) we applied an expectation-

maximization (EM) algorithm for a mixture model. In the model, each cell may belong

to one of two Poisson bivariate distributions:

1. A bivariate Poisson distribution (P1) with covariance zero and low expectations

(λx, λy) for both genes. Since the covariance is zero, the join probability mass

function is given by the product of two univariate Poisson distributions:

P1(X = x, Y = y|λx, λy) = P (X = x|λx)P (Y = y|λy)

where P (X = x|λx) = e−λxλxx/x!

2. A bivariate Poisson distribution (P2) with zero covariance which corresponds to the

product of two univariate Poisson distributions.

P2(X = x, Y = y|λ1, λ2) = P (X = x|λ1)P (Y = y|λ2)

.

The physical interpretation of this model is as follows. The counts mRNA can

come from two univariate Poisson distributions: 1) A distribution corresponding

to noise during YMC phases when the mRNA is not expressed but may be present

because of leaky promoter and/or incomplete degradation, and 2) A distribution

corresponding to signal during YMC phases when the mRNA is abundant. The con-

ditional probability for each cell to be in a YMC phase when one of the measured

mRNAs is expressed (abundant) or neither of the measured mRNAs is expresses is

given by the corresponding bivariate Poisson distribution (P1 and P2) which for this
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particular case of zero covariance are simply the product of the marginal univariate

Poisson distributions.

(a) I also examined the more general case when the covariance θ of P2 is not zero.

In this case the joint mass function is given by (5.2):

P (X = x, Y = y|λ1, λ2, θ) =

= e−(λ1+λ2+θ)λ
x
1

x!

λy2
y!

i=min(x,y)∑
i=0

(
x

i

)(
y

i

)
i!

(
θ

λ1λ2

)i
(5.2)

Since this approach resulted in very similar results to the particular sub-

case when the covariance is zero in the paper we report only the results of

the simple case when the joint mass function is given by P2(X = x, Y =

y|λ1, λ2) = P (X = x|λ1)P (Y = y|λ2). The joint mass function P2 is

defined only for non-negative values of λ12. Beyond this domain the definition

has no physical meaning and the mathematical application of the function

may result in negative functional values. For empirical estimate of λ12 that

are beyond the defined domain, P2 is computed as the product of the two

univariate Poisson distributions with expectations λ1 and λ2. This approxi-

mation corresponds to λ12 being zero and will be reflected in the conditional

probabilities for cells to belong to P2. These approximated conditional proba-

bilities may affect the distribution of cells that are close to the boundary of the

two distributions (where separation is always problematic) but are unlikely to

change the assignment of cells having high copy number of any of the two

genes of or of both genes.

Detailed computational application:

1. Initialization
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(a) The expectations and covariance for both distributions (P1 and P2) are initial-

ized:

i. λx = 1
10
mean(observed counts of gene x)

ii. λy = 1
10
mean(observed counts of gene y)

iii. λ1 = 2mean(observed counts of gene x)

iv. λ2 = 2mean(observed counts of gene y)

(b) For each observed cell the algorithm computes the conditional probabilities

for the cell to belong to either P1 or P2 using the initialized parameters and

the probability mass functions.

(c) Each cell is assigned to the more likely distribution, which is the distribution

for which the corresponding condition probability is greater.

2. Cycle

(a) The expectations of P1 and P2 are updated with their empirical maximum

likelihood (ML) estimates given the cells in each distribution.

(b) The conditional probabilities for each cell (to belong to P1 or P2) are com-

puted using the updated distribution parameters (expectations)

(c) Cells are redistributed between P1 and P2 based on the new conditional prob-

abilities

(d) The algorithm iterates steps (a-c) until the expectations converge to values that

do not change. In particular, the algorithm stops when the difference between

corresponding expectations from successive iterations is less than 10−10.

3. The gene-gene correlation then is estimated as the Maximum Likelihood Estimate

(MLE) of the normalized covariance of P1. This MLE corresponds to the Pearson
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correlation computed by averaging only across the cells that the EM algorithm

partitioned to belong to distribution P2.

Constraints: The expectations for distribution P1(λx, λy) are not allowed to be greater

than 1 or the one half the mean number of mRNAs from the corresponding gene:

λx < min(1, mean(observed counts of gene x)/2)

λy < min(1, mean(observed counts of gene y)/2)

These constraints ensures that only cell coming from YMC phases with low probability of

expression for both genes are assigned to the non-systematic component and no valuable

data are thrown away. Significance: The significance of the computed correlations is

assessed by bootstrapping. The observed numbers of mRNAs in cells portioned to P2

are permuted 106 times and the Pearson correlation for each permutation is computed.

The reported p-value is the empirical probability that the randomly permuted mRNA

counts are correlated more strongly than the counts observed in the data. In particular,

for positive correlations the p-value is the fraction of correlations in the permuted data

that are larger than the correlation in the non-permuted data. For negative correlations the

p-value is the fraction of correlations in permuted data that are smaller than the correlation

in the non-permuted data.

Intervals: The correlation interval defines the most negative and most positive corre-

lations than can be observed with the empirical mRNA counts observed in the cells that

the EM algorithm assigns to P2. The strongest negative correlation is computed as the

correlation between the counts for the two mRNAs sorted in opposite directions. The

strongest positive correlation is computed as the correlation between the counts for the

two mRNAs sorted in the same directions.
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