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The cellular abundance of proteins can vary even between isogenic single cells. This vari-
ability between single-cell protein levels can have regulatory roles, such as controlling cell
fate during apoptosis induction or the proliferation/quiescence decision. Here, we review
examples connecting protein levels and their dynamics in single cells to cellular functions.
Such findings were made possible by the introduction of antibodies, and subsequently flu-
orescent proteins, for tracking protein levels in single cells. However, in heterogeneous cell
populations, such as tumors or differentiating stem cells, cellular decisions are controlled by
hundreds, even thousands of proteins acting in concert. Characterizing such complex sys-
tems demands measurements of thousands of proteins across thousands of single cells.
This demand has inspired the development of new methods for single-cell protein analysis,
and we discuss their trade-offs, with an emphasis on their specificity and coverage. We fin-
ish by highlighting the potential of emerging mass-spec methods to enable systems-level
measurement of single-cell proteomes with unprecedented coverage and specificity. Com-
bining such methods with methods for quantitating the transcriptomes and metabolomes
of single cells will provide essential data for advancing quantitative systems biology.

Introduction
Early experimental investigations of cellular heterogeneity focussed on isogenic bacterial populations. De-
spite being isogenic and growing in the same culture, individual bacteria varied in persistence, λ phage
burst size, β-galactosidase production, and chemotactic behaviour [1–4]. These pioneering studies used
elegant approaches to investigate heterogeneity and its functional consequences but were limited by the
technology at the time, having no means of detecting gene expression in single cells. In 1994 a new tech-
nology, GFP, was introduced [5] which allowed researchers to measure and dynamically track protein lev-
els in single cells. This technological innovation enabled the accurate measurement of protein levels and
their variability across thousands of isogenic cells [6]. The measurements revealed unexpected variability
in the levels of proteins expressed from the same promoter, which the authors interpreted as biochemi-
cal noise comprising two components: intrinsic, inherent to the biochemical process of transcription and
translation, and extrinsic, dominated by external environmental fluctuations.

Regulation and functions of single-cell protein
variability
While these first studies focussed on clonal cells and attributed the variability of a protein to noise
in gene expression, in many cases the differences in the abundance of a protein across single cells
reflects different cellular states that may lead to different functional outcomes [7]. For instance, in
single mitotically cycling MCF10A cells, the level of p21, a cyclin-dependent kinase 2 (CDK2) in-
hibitor, determines whether a cell enters a quiescent or proliferative state [8]. If p21 is present
above a threshold at the end of mitosis, it inhibits CDK2 and the cell enters quiescence. Conversely,
if the level of p21 is below the threshold, CDK2 remains active and the cell continues to prolif-
erate. By making measurements of single cells, the authors also found that modulating p21 lev-
els altered the proportion of quiescent or proliferative cells, and that different cell lines exhibited
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different inherent proportions of each. Thus, the level of a single protein affects the proportion of cells in a quiescent
or proliferative state.

In other cases, experiments have demonstrated that changes in genetic parameters can tune the variability in gene
expression, and cells can exploit this variability to respond dynamically to environmental changes. To study the ef-
fect of genetic parameters on gene expression noise, the relative contributions of transcription and translation to
phenotypic noise in B. subtilis were quantitated at various rates of transcription and translation [9]. The authors
demonstrated that the efficiency of either process, and the resulting noise profile, could be altered by mutating the
promoter, which affected transcription [10] or ribosomal binding, which affected translation [11]. Subsequently, a
different group introduced both cis- and trans-acting mutations that changed the expression noise profile of a given
gene [12], providing further evidence of how gene expression noise can be biochemically encoded and evolved. These
studies indicated that gene expression variability is a selectable trait, evolved to suit the gene and its particular func-
tion.

Spencer et al. [13] provided an example of how this evolved, inherent variability in protein levels between cells
could lead to graded cellular responses across the population, and confer an overall survival advantage. They moni-
tored HeLa and MCF10 cells on their path toward TNF-related apoptosis-inducing ligand (TRAIL)-induced apoptosis
and observed highly variable outcomes between single cells: most cells died, doing so at an exponentially decaying
rate, but a small subpopulation always survived altogether and continued growing. After measuring the protein-level
distributions of five apoptotic regulators, the authors found that the measured inherent variability in the levels of
these proteins was enough to account for the variability in cellular response time between induction and apoptosis
itself. Thus, inherent distributed protein levels can lead to graded responses to stress at the population level, and
can improve the chances that a small population of cells survives a particular stress. Similarly, variable response
to stress as a bet-hedging strategy was theoretically predicted [14] and later experimentally demonstrated in yeast
[15], where it was shown that more stochastic expression of MSN2/4 target genes increased the population survival
rate under stress by 20%. The examples above demonstrate that protein expression noise plays a regulatory role in
population-level co-operation, co-ordination, and survival. Discovering and understanding such regulatory mecha-
nisms requires single-cell measurements.

New technology can enable new biology
Just as the seminal work finding gene expression variability [6] depended on a new technology, so did current ef-
forts to understand and control cell function and fate. Studying regulation across heterogeneous cellular systems,
such as human tissues, cancers, or differentiating cells, demands technologies that can measure gene expression at
the systems level. Toward this end, single-cell RNA-seq methods have made much progress at measuring single-cell
transcriptomes [16]. Over the last decade, the technology has progressed rapidly from identifying transcripts in sin-
gle cells [17] to droplet-based sequencing of tens of thousands of cells [18]. This progress has led to its widespread
use for classifying subpopulations of cells, often uncovering previously undetected but biologically relevant rare cell
subpopulations [19,20].

While single-cell RNA-seq techniques are steadily advancing our knowledge of heterogeneous cell systems, they
can only capture a portion of the transcriptional gene expression profile in any given cell. Since sequence reads are
split amongst all analyzed cells, increasing the number of analyzed cells per experiment decreases the number of
sequence reads per cell. This trend increases the number of missing data points, which were present and confounded
the analysis even of lower throughput methods [21]. Since single-cell RNA-seq methods usually captured less than
20% of the mRNAs, they incur substantial sampling error, especially given the low average mRNA copy number per
cell (median: ∼17). Proteins have >1000-fold higher average copy numbers per cell (median: ∼50000), and thus
single-cell proteomics has an opportunity to alleviate the uncertainty incurred by sampling error [22].

Single-cell RNA-seq techniques have been transformative [19,20] and continue to advance RNA-based biological
research, but mRNA levels alone are insufficient for characterizing, understanding, and controlling biological systems.
Even at the superficial descriptive level, single-cell RNA-seq cannot capture post-translational modifications (PTMs).
Well-characterized regulatory mechanisms, such as long-lived proteins [23] and translational regulation [24] make
mRNAs poor surrogates for functional proteins. Munsky et al. [25] simulated the distributions of mRNA and protein
levels for a number of gene regulatory motifs, and showed that depending on the motif, mRNA levels were not neces-
sarily correlated to the corresponding protein’s level. The different time scales of mRNAs and proteins could account
for differences between mRNA and protein levels. Globally, mRNA levels can explain differences between the abun-
dance of different proteins, but only poorly explain the relative changes of individual proteins across human tissues
[26]. These relative differences implicate post-transcriptional regulation as an important regulatory mechanism that
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Figure 1. Classification of single-cell protein analysis methods based on their specificity, proteome coverage, and cell

throughput

(A) Antibody-based methods, in red, are widely utilized and generally applicable to intermediate number of proteins at once. Their

specificity depends on the antibody and can be rather low. The specificity of antibodies can be increased by electrophoretic sepa-

ration (scWestern) or using multiple antibodies per protein (PEA). Fluorescent protein-based methods, in green, are highly specific

and facilitate monitoring protein levels over time, but are limited to quantitating only a few proteins per cell because of spectral over-

lap. MS can increase both specificity and depth of coverage. MALDI-TOF has been used to study single cells and spatial questions

for decades, but it offers only medium specificity and low proteome coverage. SCoPE-MS enables simultaneous identification and

quantitation of hundreds of proteins from single cells, and demonstrates one path toward comprehensive quantitation of proteins

in single cells. (B) Flow cytometry-based and automated imaging techniques, encompassing many antibody and fluorescent pro-

tein-based methods, can robustly assay tens of thousands of cells per experiment, lighting the way for statistical analysis of single

cell data. For the remaining techniques of higher specificity antibodies or MS, there is generally a trade-off between specificity and

cellular throughput. All values are applicable for a typically sized mammalian cell, with a diameter of ∼15 μm and ∼500 pg of total

protein. Abbreviations: PEA, proximity extension assay; SCoPE-MS, single cell proteomics by MS; scWestern, single-cell Western

blot.

shapes tissue-specific proteomes. In order to characterize the molecular and signaling mechanisms controlling cell
function, new technologies for quantitating all proteoforms in single cells will be needed. A proteoform is defined as
the set of all molecular forms of a protein produced from one gene [27]. Different proteoforms of the same protein
can have different functions and need to be quantitated distinctly [28]. Ultimately, comprehensive quantitation of
proteoforms across thousands of single cells can reduce the number of assumptions in signaling network modelling,
and even enable causal inference [22].

Although quantitating proteins in single cells is necessary for systems-level analysis, it is also insufficient. Addi-
tional measurements of other layers of biological regulation can capture important information upstream of transla-
tion, furnishing a more complete understanding of a regulatory motif or pathway. To characterize the interplay be-
tween various layers of regulation at a systems level [29], new single-cell technologies and studies should strive toward
‘multiomics’ methods [30] that enable simultaneous systems-level measurement of proteins, metabolites, mRNAs, and
DNA modifications.

Methods for quantifying protein levels in single cells
There are three major modalities for identifying and quantitating proteins in single cells: (i) genetically engineered
fluorescent proteins, (ii) antibodies, and (iii) mass spectrometry (MS). The first two have so far dominated cellular
protein research, and have enabled many discoveries, including those reviewed above. The third method shows the
greatest promise for increasing both the specificity and the throughput of single-cell protein analysis, Figure 1. Below
we discuss the distinctive advantages and weaknesses of the current methods, which are summarized in Table 1.
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Table 1 Comparison of methods for single cell-protein analysis

Method name Method type Specificity
# Quantified
proteins/cell

# Analyzed
cells Cell fixation

PTM
quantification

Examples of
applications

Microscopy Fluorescent protein High Low High Compatible No Protein dynamics
[6,31]

Flow cytometry Fluorescent protein High Low High Required No Gene expression
variability [9,15]

Microscopy Antibody Low Low High Compatible Yes Spatial mapping [43]

Flow Cytometry Antibody Low Low High Required Yes Cell subtype
heterogeneity [13,54]

CyTOF Antibody Low Medium High Required Yes Immune cell subtype
heterogeneity [52]

PLAYR Antibody (+mRNA) Low Medium High Required Yes mRNA and protein
discrepancies [80]

Abseq Antibody (+mRNA) Low Low Medium Compatible Yes Surface marker
heterogeneity [53]

REAP-seq Antibody (+mRNA) Low Medium Medium Compatible Yes Immune cell subtype
heterogeneity [48]

scWestern Antibody Medium Low Medium Compatible Yes Resolve non-specific
probe signal [55,56]

PEA Antibody (+mRNA) Medium Medium Medium Compatible Yes Drug response
heterogeneity [57,81]

MALDI-TOF Mass Spec Medium/High Medium/High Medium Compatible Yes Spatial mapping of
molecules [61,62]

SCoPE-MS Mass Spec High High Low Limited
compatibility

Likely Stem cell population
heterogeneity [70]

Methods for protein quantitation in single cells exhibit an inverse relationship between detection specificity and number of analyzed cells per experiment.
Most methods are compatible with fixed cells, some require it, and MS-based methods are compatible with some fixatives, e.g. methanol, but poorly
compatible with others, e.g. formaldehyde. All antibody-based methods can detect PTMs, and while MS can accomplish this for larger samples, its
potential to do so at the single-cell level remains unproven. Most recent methods have emphasized increases in depth and throughput to allow exploring
global gene expression variability at the protein level, in order to address questions of functional heterogeneity in diverse cell populations. Abbreviations:
CyTOF, mass cytometry; PEA, proximity extension assay; REAP-seq, RNA expression and protein sequencing; SCoPE-MS, single cell proteomics by
MS; scWestern, single cell Western blot.

Fluorescent proteins enable quantifying protein dynamics
Since the discovery and cloning of GFP [5], the community has engineered many fluorescent proteins with sub-
stantially enhanced functions, such as different spectral characteristics, fast folding and maturation, increased and
decreased resistance to photobleaching, and FRET [31,32]. Fluorescent proteins allow dynamic measurements of
protein levels and location over time, Table 1. Such measurements have been instrumental for discovering biological
functions that depend not merely on the levels of a protein, but also on its dynamics [33–36]. For example, different
dynamics of p53 induce the transcription of different sets of genes and different cell fates [37]. Indeed, important
cellular functions are regulated by dynamic signaling mechanisms [38,39], and thus measuring protein dynamics is
essential to understand biological systems. However, the number of proteins that can be quantitated per cell using flu-
orescent proteins remains capped at ∼12, limited by the fluorophores’ spectral overlap [40]. Furthermore, fluorescent
proteins have limited utility with systems that cannot be genetically engineered, such as clinical samples. Engineer-
ing new suites of fluorescent proteins for each new biological question requires much time and effort, and is often
prohibitive for systems level measurements.

Antibody-based methods
Antibodies can target some protein portion of many cellular pathways in single cells, for instance enabling studies
of emergent cancer resistance [41], and can be applied over a broad dynamic range [42]. Immunohistochemistry
enables visualization of tissue sections with single-cell resolution, while immunocytochemistry does the same for
monolayer cell cultures [43]. Antibodies are frequently incorporated in flow cytometry, characterizing patterns of a
few proteins across tens of thousands of cells [44]. Additionally, antibodies have a long history of detecting and quan-
titating PTMs. However, detecting multiple PTMs per protein, especially PTMs in close proximity, with antibodies
can be challenging. Antibodies face two primary hurdles for more comprehensive protein coverage: specificity and
scalability [45–48]. Indeed, a recent study tested 1124 antibodies and validated only 354 (∼31%) antibodies [49].
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New methods are attempting to overcome these challenges by increasing protein multiplexing while maintaining or
improving antibody specificity for protein quantitation in single cells. See Figure 1 and Table 1.

Conjugating fluorophores to antibodies was the first widely used readout of antibody binding and continues to
be used widely in conjunction with microscopy and flow cytometry (Figure 1 and Table 1). These methods allow
quantitating many cells per unit time, and microscopy provides spatial information on protein localization. A pri-
mary limitation of antibody-conjugated fluorophores is the overlap between the spectra of distinct fluorophores.
This overlap allows relatively few antibody-conjugated fluorophores to be assayed at a time (Figure 1 and Table 1).
More recent antibody-based methods aim to relieve this limitation by using antibody readouts that allow for assaying
more analytes per cell.

Such readouts, used by mass cytometry (CyTOF) [50], are transition element isotopes conjugated to antibodies.
Since these metals are normally absent from biology, the non-specific background is minimal. CyTOF starts by la-
beling fixed cells with antibodies conjugated to transition metals. Then droplets containing single cells are isolated,
the cells vaporized, and the remaining transition metals analyzed by a TOF mass spectrometer. CyTOF is a mature
technology that can routinely analyze tens of thousands of cells per hour, detect and quantitate very lowly abundant
epitopes such as PTMs, and has been multiplexed to simultaneously process 60 samples [51]. Bendall et al. [52] em-
ployed CyTOF to quantitate the immune response of thousands of single cells from healthy human bone marrow
samples. They developed two panels of antibodies designed to interrogate different aspects of the immune response.
From the 13 proteins common to both panels, the authors created a map of phenotypically and presumably func-
tionally linked immune cell populations. The authors then overlaid the data from the 18 remaining, panel-specific
proteins to refine their map, uncovering further heterogeneity within numerous subsets of the larger, annotated cell
populations. Although CyTOF begins to probe the pathway level for thousands of cells at a time, it relies on single
antibodies, and is limited to fewer than 40 epitopes per cell, Table 1.

Another approach for increasing the antibody readouts per cell relies on conjugating antibodies with DNA oligonu-
cleotides (barcodes), and a number of recent methods, including Abseq, cellular indexing of transcriptome and epi-
tope by sequencing (CITE-seq), and RNA expression and protein sequencing (REAP-seq), have employed this strat-
egy [48,53,54] (see Figure 1 and Table 1). With Abseq, single cells are incubated with barcoded antibodies recog-
nizing cell-surface proteins; the method is limited to surface proteins. The incubation is done in a high-throughput
microfluidic device, then the barcodes are amplified by PCR and the resulting DNA sequenced. The number of reads
per barcode is interpreted as a surrogate for the protein level. CITE-seq and REAP-seq also employ droplet microflu-
idics, and subsequently generate protein and RNA level readouts by integrating oligonucleotide-tagged antibodies
into established single cell transcriptomic workflows. The microfluidic medium enables parallel processing of thou-
sands of single cells, fewer than flow-based technologies such as CyTOF. Although there is no practical limit to the
number of unique identifiers that can be chemically conjugated to antibodies of choice, these methods are inherently
limited by the number of available antibodies, their specificity, the epitope availability, and the number of antibodies
that can be introduced per cell before molecular crowding becomes a limiting factor. These limitations have so far
circumscribed the number of quantitated proteins to two surface markers for Abseq and ∼ 80 proteins for REAP-seq.

Approaches for increasing the specificity of antibody-based methods
The above methods depend critically on the specificity of a single antibody and will perform very poorly in the pres-
ence of non-specific binding. To alleviate such concerns, two strategies have been developed to increase the specificity
of antibody-based single-cell methods as described below:

First, single-cell Western blotting (scWestern) increases the specificity of antibodies by physically separating pro-
teins from single-cell lysates. This is accomplished by electrophoresis [55] or isoelectric focussing of proteins [56],
and the added dimension of separation helps single-antibody probing resolve non-specific signals. Hughes et al. [55]
used in-house fabricated open-microwell arrays to separate proteins with at least 50% different masses from single
cells. In the open-microwell format, the authors simultaneously applied scWestern to 5040 single-cell samples and
obtained quantitative measurements for 1608 of these samples in just over an hour. However, the method introduces
additional protein loss of ∼40% for each single cell, and introduces a limit of detection of 27000 molecules, while the
median protein has ∼50000 copies per cell, e.g. per murine fibroblast. Although the same blot can be stripped and
reprobed for different proteins upward of nine times, the number of proteins simultaneously measurable by scWestern
is fundamentally the number of re-blotting cycles and the number of high-quality antibodies.

The second approach to increasing signal specificity for antibody-based methods is the proximity extension assay
(PEA). PEA increases specificity by requiring the binding of two different oligonucleotide-tagged antibodies to the
same protein before a signal can be generated [57,58]; see Figure 1 and Table 1. Two antibodies bound to the same pro-
tein carry overlapping sequences that ligate upon binding, allowing subsequent extension, amplification, digestion,
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and quantitation of a few dozen proteins by microfluidic qPCR, which can be performed on plates of FACS-sorted
single cells, yielding a throughput of ∼100 cells per hour. Requiring two antibodies reduces background signal com-
pared with single-antibody probing, and the less stringent specificity requirements permit the use of a wider range of
antibodies. However, not all of these additional antibodies are necessarily applicable; epitope availability and molec-
ular crowding inhibit how comprehensively PEA can be applied, since any given protein must have two antibody
binding sites that are amenable to oligonucleotide overlap.

Single-cell antibody methods will continue to scale as efforts to retain or improve antibody specificity evolve (Table
1).

MS-based methods
Proteins can be identified and quantitated by MS. Indeed, MS applied to bulk samples comprising millions of cells can
already measure thousands of proteins at once with high specificity [59,60], including important PTMs that affect cell
function and dynamics, such as phosphorylation [52]. Although most MS methods remain bound to bulk samples,
new methods are enabling the simultaneous analysis of more complete proteomes of increasing numbers of single
cells.

A combination of matrix assisted laser desorption/ionization (MALDI) with time-of-flight (TOF) MS, commonly
abbreviated as MALDI-TOF, has been applied to single cells for approximately two decades [61,62], enabling identi-
fication and spatial mapping of dozens of molecules, metabolites, and peptides, Figure 1. However, the variability in
the fraction of peptides ionized across samples limits the quantitative accuracy of measurements relying on MALDI
ionization. Furthermore, since peptides are not separated and enter the instrument at the same time, the acquired
spectra comprise a mixture of the spectra of many peptides. These complex spectra are hard to interpret and rel-
atively few peptide sequences can be confidently identified. Thus, while MALDI has been employed widely in the
spatial mapping of neuropeptides in single neurones [63] or proteins in tissue samples [64], it remains bound to
biological questions of localization rather than quantitation.

The MS method that has allowed for well-controlled and accurate measurements of tens of thousands of proteins
is liquid chromatography (LC) combined with electrospray ionization (ESI) and tandem MS, usually abbreviated as
LC-MS/MS. Ideally, LC-MS/MS can be applied to single-cell lysates to give the deep and accurate quantitation of
proteins and proteoforms that it has afforded with bulk samples. However, large losses during sample preparation
and delivery for LC-MS/MS and relatively low sensitivity have limited its application to very small samples.

Very sensitive workflows have begun to apply LC-MS/MS to small samples comprising hundreds of human cells
[60] and even to large single cells, such as oocytes [65,66] and muscle fibers [67,68]. These applications developed
and applied very sensitive methods to quantitate between 450 and 800 proteins in single human oocytes, and ∼2100
proteins in single muscle fibers. Yet the typical single mammalian cell contains orders of magnitude less protein
than oocytes and muscle fibers [69] and poses even greater challenges. Our early attempts at using LC-MS/MS to
identify and quantify proteins from typically sized single mammalian cells, dubbed single-cell proteomics by MS
(SCoPE-MS) [70], aimed to increase the efficiency of delivering proteins to the MS instrument and the confidence of
peptide sequencing by combining two strategies.

The first strategy sought to minimize sample loss by optimizing a ‘clean’ sample processing pipeline that required no
chemical cleanup; rather, it employed mechanical cell lysis by sonication and only LC- and MS-compatible reagents.
This obviated the losses typically incurred by chemical cleanup and pipetting. The second strategy increased both
the number of quantitated cells per run and the confidence in peptide identification by using isobaric mass tags [71].
These tags covalently bond with peptides, allowing peptides from different samples to be distinguished from one
another. We used these tags to label the cell lysates of single cells as well as the lysate of 200 cells, termed carrier cells,
and combined the labeled single cells and the carrier cells into a single sample. Incorporating the carrier cells into
the workflow conferred two benefits: (i) it reduced the peptide loss experienced by the single cells during sample
preparation and nanoLC separation, and (ii) it improved identification confidence by increasing the total number of
ions delivered to the mass spectrometer. Combining these strategies minimized sample loss in the processing pipeline,
which then delivered enough single-cell sample for confident identification. This allowed reliable relative quantitation
of ∼600 proteins in any given single cell, and over 1000 proteins across hundreds of differentiating mouse embryonic
stem cells.

We have outlined specific strategies that can increase throughput – both number of quantitated proteins and num-
ber of analyzed cells – by orders of magnitude [22]. Such improvements are required for MS to become a powerful
platform for single cell protein analysis, Figure 1. Though current MS-based methods are limited in cell throughput
to ∼10 cells/h per instrument, incorporating existing automation technologies and increasing cellular multiplexing
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can increase cell throughput, a critical determinant of statistical power [22]. Reducing sample volumes from micro-
liters to nanoliters can significantly alleviate protein adsorption, as demonstrated recently by lysing cells in hundreds
of nanoliters using a custom chip dubbed ’nanodroplet processing in one pot for trace sample’ (nanoPOTS) [72].
Another avenue for improvement is peptide separation. It can be achieved not only by LC but also by capillary elec-
trophoresis (CE), and CE-MS/MS [66] can offer some advantages over LC-MS/MS for very limited complex samples,
such as the proteomes of single cells, since it allows reduced flow rates and thus improved ionization of molecules.
Furthermore, CE-MS/MS is the most promising method for quantitating proteins without having to digest them in
what is commonly referred to as top-down MS. Critically, the LC-MS/MS strategy also has the potential to measure
PTMs, such as phosphorylation and glycosylation [73–75]. The development of such methods is just beginning and
although unpublished results from our laboratory demonstrate their feasibility, much further development is needed
to make single-cell PTM analysis routine. Finally, technical improvements in parallel ion accumulation and sampling
efficiency will improve the sensitivity, accuracy, and depth of quantitation across the analyzed cells [22].

Many of the analytical methods developed for bulk MS data can be applied to single-cell MS data as well, but
single-cell data pose additional challenges that will motivate the development of new methods. Some of the challenges
for single-cell proteomics are similar to those for scRNA-seq, e.g. significant measurement noise and missing data
(i.e. not all proteins will be quantitated in all cells). We believe that the fraction of missing data can be reduced by
using targetted MS approaches, while the noise can be reduced by improved ion sampling, e.g. by increasing the ion
accumulation time [22]. These aspects of the data can also benefit from methods developed for scRNA-seq data [21].
Other challenges, such as reliable sequence identification, are specific to single-cell proteomics and will necessitate
new analytical methods, including improved analysis of MS spectra and the use of additional informative features,
such as retention time [22].

More excitingly, we believe that quantitating all relevant proteoforms across thousands of single cells can enable
powerful data-driven models of biological networks. Empirically estimated joint and conditional distributions can ob-
viate assumptions about the functional form of interactions between proteins and afford distinguishing direct from
indirect effects in biological networks [22]. While the inference of probabilistic graphical models has received much
attention in biology [76,77], it has always been limited by a lack of sufficient observations across conditions/cells, by
missing variables (e.g. only mRNAs are measured while key proteins and PTMs that mediate signals are not), and
by the confounding effects of population averages. We believe high-throughput single-cell MS has the potential to
overcome these data limitations and will motivate the development of new inference algorithms that can accommo-
date loopy networks and afford efficient computation based on empirical distributions. If successful, these approaches
will transcend mere molecular descriptions and empower models that enable rational control of cells, e.g. efficient
directed differentiation, and hopefully uncover new principles of emergent biological behavior.

Simultaneous quantitation of proteins and RNAs in single
cells
While quantitating protein levels in single cells can be powerful alone, it is even more powerful when combined with
the quantitated transcriptomes of the same single cells. Thus, an important direction in the advancement of single-cell
proteomics methods is making them compatible with single-cell transcriptomic methods, which are generally more
mature [30], and single-cell metabolomics methods, many of which already employ MS [78,79].

In initial attempts, both CyTOF and PEA, described above, have been used to quantitate some transcripts and their
corresponding proteins in the same single cell. To enable quantitating mRNAs by CyTOF, Frei et al. [80] developed
and integrated a proximity ligation assay for RNA (PLAYR) into the CyTOF workflow. The PLAYR method is com-
patible with flow cytometry and CyTOF, and the authors used both to quantitate transcripts alone, in addition to
simultaneously quantitating ten transcripts and corresponding proteins in single primary human peripheral blood
mononuclear cells (PBMCs). Darmanis et al. [81] extended the use of PEA to simultaneously measure ∼22 mRNAs
and corresponding proteins by performing TaqMan and PEA on the split lysate of single neural stem cells undergoing
BMP4-induced differentiation. Their comparative analysis of the predictive power of mRNA and/or protein levels for
assigning single cells to a treatment group demonstrated that proteins were better predictors for the functional re-
sponse to BMP4-treatment than RNA, though both proteins and mRNA levels contributed unique information; the
combined data predicted treatment group more effectively than mRNA or protein alone.

Ultimately, we would like to comprehensively quantitate the transcriptome, the proteome, and the metabolome
of the same single cell. RNA-seq is steadily advancing high-throughput single-cell transcriptomics toward this end,
while MS offers the most promising method for high-throughput single-cell proteomics and metabolomics. In the
short term, single-cell multiomics experiments will likely be performed on cell lysates divided in half, where one
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part is sent for nucleotide base sequencing and the other for MS-based proteomic and metabolic analysis. The losses
incurred by such lysate splitting could be mitigated by first amplifying the nucleic acids or by developing techniques
that allow nearly lossless separation of molecular types, an area in which we expect to see much progress in the near
future.

Concluding remarks
Growing evidence elaborates on how protein-level cellular heterogeneity is intricately tied to cell fate in such varied
biological contexts as cancer, differentiation, and mitosis. Transcriptomic studies provide an appreciation for the het-
erogeneous nature of the cells making up these systems, but cannot capture most PTMs, such as phosphorylation
and glycosylation, which are critical layers of regulation. Ultimately, single cell proteomic measurements are required
to characterize functional variability at the systems level. MS is poised to enable such measurements, and will con-
tinue to improve alongside parallel advances in instrumentation, automation, and computation. MS can also enable
multilayer analyses of the same single cell beyond the protein level and begin to quantitate PTMs, metabolomes and
transcriptomes simultaneously with proteomes. These high-powered, high-dimensional data will power systems-level
measurement and characterization across many biological questions, and have an opportunity to set new standards
of accuracy, applicability, and depth in quantitative systems biology.

Summary
• The levels of a protein can vary across single cells both because of stochastic influences, noise in

gene expression due to low-copy-number molecules, and because of cellular responses and regu-
latory mechanisms.

• Protein levels influence cellular functions and determine cell fate.

• Current technologies enable the simultaneous study of a few proteins, but face challenges when
scaled to pathway-level multiplexing.

• The next generation of systems biology needs more powerful methods for quantitating proteins in
single cells.

• MS is poised to enable deep quantitation of single-cell proteomes for the next generation of systems
biology.
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